
Gateway Access Process
User Guide

Manual revision date:

July 12, 2007

GAP software version:

A49

AWAN 3883/4/5 firmware version:
gem046

AWAN 3886 software version:

gem242

Gemini Communications Inc.
Rich Pope:
15N460 Settlers Grove Road

Hampshire, IL 60140 USA

Phone

847-464-5820

Fax

847-464-5823

Email

Rsp@geminic.com

Dave Cikra:
29120 N. 108th Street

Scottsdale, Arizona 85262 USA

Phone

480-513-6229

Fax

480-513-8747

Email

Dhc@geminic.com

web site:

http://www.geminic.com
Document Revision History

First Edition
June 1, 1997
GAP A07

Second Edition
July 2, 1997
GAP A08
firmware GEM027

Third Edition
Sept. 30, 1997
GAP A11
firmware GEM028

Fourth Edition
Feb. 23, 1998
GAP A16
firmware GEM028.4

Starting with GAP Release A17, refer to the Chapter on Release Notes at the end of this manual.

The current revision information is now shown on the front cover.

References

Access Beyond Manual, Part Number 129452, May 1997, Compaq Computers (superceded by 142118 and 142119)

AWAN Access Server Installation and Support Guide, Part Number 142118, August 1998, Compaq Computers

AWAN Access Server Configuration and Management Manual, Part Number 142119, August 1998, Compaq Computers

Addendum to AWAN Access Server Manuals, Part Number 142118-001, June 1999, Compaq Computer Corp.

SOFTDOC for T0373 AWAN Bootblock, T0374 AWAN GUI Configuration Management Tool, and T0375 AWAN Firmware

AWAN 3886 Server Installation and Configuration Guide, Part Number 424372-001, December 1999 (TIM G06.07), Compaq Computers
SOFTDOC for T0484 AWAN 3886 Software

ATP6100 ARC Release 17, Version S User Guide, 04/11/95 (TGAL format), CISCORP, Inc.,

Information in this document is subject to change without notice and does not represent a commitment on the part of Gemini Communications Incorporated. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose without the express written permission of Gemini Communications Incorporated.

Copyright © 1996-2000 by Gemini Communications Incorporated. All rights reserved.

COMPAQ, NonStop, GUARDIAN, TACL, and TMF are trademarks of Compaq Computers Inc.

Chapter 1
- Introduction
13
Overview
13
Application Programming Interfaces
13
Hardware and Software Requirements
13
Operational Overview
14
Flexible Deployment
15
Chapter 2
- Installation
17
Overview
17
DSV Contents
17
Distribution on NonStop Backup Tape
18
Distribution Via Diskette or Internet FTP
18
Configuring (Licensing) GAP
19
Daily 9:00 AM License Expiration Check
21
LICENSE^REFRESH
21
Installing a new GAP LICENSE File
21
Chapter 3
- Running GAP
23
Overview
23
Running GAP from TACL
23
Running GAP as a Kernel Persistent Process
24
PARAM BACKUPCPU cpu
24
PARAM GFTCOM^OBJECT filename
24
PARAM GFTCOM^IN filename
24
PARAM GFTCOM^OUT filename
25
PARAM GFTCOM^PARAM <param>
25
PARAM POOL^SIZE number
25
PARAM SECURITY letter
25
PARAM TRACE^SIZE number
26
PARAM TRACE^FILE trace-file
26
Sample Startup Obey Files
26
Chapter 4
Commands
27
Overview
27
Running GAPCOM
27
GAPCOM Command Summary
29
ABORT SERVER
30
ABORT WINDOW
30
ADD SCRIPT
30
ADD SERVER
31
ADD WINDOW
33
AUTO^ADD
34
BACKUP / BACKUPCPU
35
COMMENT
36
CONNECT
36
CONNECT^TIMEOUT
36
CTRACE
37
DEFAULT SERVER
38
DEFAULT SCRIPT
38
DEFAULT TYPE
38
DELETE SCRIPT
40
DELETE WINDOW
40
EXIT
40
FC
41
HELP
41
INFO PROCESS
41
INFO SCRIPT
42
INFO SERVER
42
INFO WINDOW
43
KEEPALIVE
43
KILLOPEN
44
LICENSE^MONITOR
44
LICENSE^REFRESH
44
LISTOPENS
45
OBEY
46
OPEN
46
OPEN^TIMEOUT
46
OPEN^TIMEOUT^FE
47
PENDING^140
47
POOL
48
RECONNECT^DELAY^MIN and RECONNECT^DELAY^MAX
49
REPLY^ERR^ABEND
50
SECURITY
50
SHUTDOWN
51
START SERVER
52
START WINDOW
52
STATUS SERVER
53
STATUS WINDOW
53
STOP SERVER
54
STOP WINDOW
54
TRACE
54
VERIFYOPENS
55
VERSION
55
Chapter 5
- ATAP API
57
Overview
57
Server Contact and Port Connect
57
Application Open
57
AWAN 3883/4/5 Server Configuration
58
AWAN 3886 Server Configuration
59
AWANCLI Utility Program
60
Write Operations
62
Writeread Operations
62
Read Operations
63
Interrupt Character Handling
65
Cancel Operations
66
Control and Setmode Operations
66
Deviceinfo Operations
66
Control 1 - Forms Control
67
Control 11 - Wait for Carrier Detect
67
Setmode 216,0
68
Setmode 216,1
68
Setmode 216,2
68
Setmode 216,3
68
Setmode 216,4
68
Setmode 216,5
69
Control 12 - Drop Data Terminal Ready
69
Control 40 - flush type-ahead buffer.
70
Setmode 200 - Set/read modem signals
70
Setmode 201 - Send Break
70
Setmode 202 - Enable Writeread spacer prefix
71
Setmode 203 - First byte timeout
71
Setmode 204 - Inter-byte timeout
71
Setmode 205 - Total read timeout
71
Setmode 206 - Write timeout
71
Setmode 207 - Verify ATAP
71
Setmode 208 - Flow control
72
Setmode 209 - Define type-ahead buffer size
72
Setmode 210 - Set Modem Attribute
72
Setmode 211 - Carrier Detect (CD) Loss Notification
72
Setmode 212 - Set Carrier Detect Timeout Interval
73
Setmode 213 - Stop Pending IO Operation(s)
73
Setmode 214 - DCD (Data Carrier Detect Override)
73
Setmode 215 - ARC Compatibility Mode
74
Pin Status Query (Command code hex 02)
74
Report DCD Drop
75
Send Timed Break (Command code hex 04 - qualifier hex 02)
75
Disconnect (Command code hex 04 - qualifier hex 0c)
75
DEVICEINFO2
75
OPEN
75
Overall Timing
75
Timers
75
Parity
75
Completion Order
75
Baud Rates
76
File System Error Codes
76
Write abort
76
Configuration
76
Cancel
76
Line Errors
76
Setmode 216 - Control 11 Signal Usage
76
Setmode 217 - Extended Interrupt Character Handling
76
Setmode 218 - Carriage Control Handling
78
Setmode 219 - Parity Mode
78
Setmode 220 - Handling of unsupported setmode operations
78
Setmode 221 - UART Read Buffer Size
79
Setmode 222 - ETX and ETB Characters
79
Setmode 223 - Line Termination Character
80
Setmode 224 - UART Read Timeout
80
Setmode 225 - Control 12 Delay
80
Setmode 226,227 - Internal Use Only
81
Setmode 228 - Verify 3886
81
Setmode 229 / 230 – Do not use
81
Setmode 231 – Half-Duplex
81
Setmode 232 – Type-Ahead Buffer Flush
82
Setmode 233 – Flush transmit buffer on cancel
82
Setmode 234 – Flush half-duplex type-ahead buffer on control 11 / write
83
Setmode 235 – Simulate DCD on 3886 models without DCD connection
83
Setmode 236 – Get info
83
Setmode 237 – Setmode 38 compatibility
84
Setmode 238 – Writeread synchronization
84
Setmode 239 – CDSISR Checking
85
Setmode 240 – Expanded CTRACE buffering
85
Setmode 241 – Delay after DTR change
86
Setmode 242 – Monitor DSR Drop
86
Setmode 243 – Enable setmode 11
87
Standard ATP6100 Setmode functions
87
Conversion from CMI Configuration
91
Guardian File System Error Codes
93
Modem “AT” Commands
95
Chapter 6
- 6530 API
97
Overview
97
Operations not supported for 6530 API
97
Chapter 7
- EMS Events
99
Overview
99
Chapter 8
- Troubleshooting
109
Overview
109
Standard AWAN Support and GAP Support
109
GAP cannot contact server
109
File Error 12 on Open of $GAP.#PORTxx
110
Unexpected Results - Using ATAPD
110
Tracing
110
Chapter 8 – Release Notes
112
GAP A17 – 12 March 1998
112
AWAN Firmware gem028.5 – 11 March 1998
112
GAP A18 – 08 May 1998
113
AWAN Firmware gem028.7 – 22 May 1998
113
AWAN Firmware gem028.14 - 03 July 1998
113
AWAN Firmware gem028.17 - 11 July 1998
113
AWAN Firmware gem028.18 - 25 July 1998
113
AWAN Firmware gem028.19 - 10 August 1998
113
AWAN Firmware gem028.20 - 23 August 1998
114
GAP A19 - 25 July 1998
114
AWAN Firmware gem028.21 - 25 August 1998
114
AWAN Firmware 029 - 09 October August 1998
114
GAP A20 - 11 October 1998
114
GAP A21 - 05 November 1998
115
AWAN Firmware 030 - 15 January 1999
115
AWAN Firmware 031 - 31 January 1999
115
GAP A22 - 31 January 1999
115
AWAN Firmware 032 - 08 February 1999
115
AWAN Firmware 033 - 10 February 1999
115
AWAN Firmware 034 - 23 April 1999
116
AWAN Firmware 035 - 25 May 1999
116
AWAN Firmware 036 - 16 June 1999
116
AWAN 3886 Software 207 - 08 November 1999
116
AWAN 3883/4/5 Firmware 037 - 15 December 1999
116
AWAN 3883/4/5 Firmware 038 - 03 January 2000
116
GAP A23 - 13 January 2000
116
AWAN 3883/4/5 Firmware 039 - 05 February 2000
116
GAP A24 - 16 February 2000
116
GAP A25 – 11 June 2000
117
GAP A26 – 16 July 2000
117
AWAN 3886 Software 208 – 23 July 2000
117
AWAN 3886 Software 209 – 27 July 2000
117
GAP A27 – 28 July 2000
118
GAP A28 – 02 August 2000
118
GAP A29 – 04 August 2000
118
AWAN 3886 Software 210 – 07 August 2000
118
AWAN 3886 Software 211 – 10 August 2000
118
AWAN 3886 Software 212 – 17 August 2000
118
AWAN 3886 Software 213 – 22 August 2000
118
GAP A30 – 22 August 2000
118
GAP A31 – 04 September 2000
119
AWAN 3883/4/5 Firmware 040
119
AWAN 3883/4/5 Firmware 041 – 11 August 2000
119
AWAN 3883/4/5 Firmware 042 – 18 September 2000
119
AWAN 3883/4/5 Firmware 043 – 10 October 2000
119
AWAN 3883/4/5 Firmware 044 – 23 October 2000
119
AWAN 3886 Software 214 – 10 November 2000
119
AWAN 3883/4/5 Firmware 045 – 22 November 2000
119
AWAN 3886 Software 215 – 23 November 2000
120
AWAN 3886 Software 216 – 18 December 2000
120
GAP Software A32 – 19 December 2000
120
AWAN 3886 Software 217 – 22 Jan 2001
120
GAP Software A33 –22 January 2001
120
AWAN 3886 Software 218 – 05 Feb 2001
120
AWAN 3886 Software 219 – 14 March 2001
120
AWAN 3886 Software 220 – 16 April 2001
121
GAP Software A34 – 07 May 2001
121
GAP Software A35 – 15 July 2001
121
AWAN 3886 Software 221 – 06 September 2001
121
AWAN 3886 Software 222 – 29 September 2001
121
AWAN 3886 Software 223 – 01 October 2001
121
GAP Software A36 – 02 October 2001
121
AWAN 3883/4/5 Firmware 046 – 10 December 2001
121
GAP Software A37 – 16 December 2001
121
GAP Software A38 – 24 January 2002
122
AWAN 3886 Software 224 – 28 January 2002
122
GAP Software A39 – 01 March 2002
122
AWAN 3886 Software 225 – 06 March 2002
122
AWAN 3886 Software 226 – 09 June 2002
122
GAP Software A40 – 15 October 2002
122
AWAN 3886 Software 227 – 21 October 2002
122
AWAN 3886 Software 228 – 31 October 2002
122
GAP Software A41 – 20 November 2002
123
GAP Software A42 – 28 November 2002
123
AWAN 3886 Software 229 – 15 December 2002
123
GAP Software A43 - 12 February 2003
123
AWAN 3886 Software 230 – 18 May 2003
123
AWAN 3886 Software 231 – 27 May 2003
123
AWAN 3886 Software 232 – 30 May 2003
123
GAP Software A44 – 09 June 2003
123
AWAN 3886 Software 233 – 16 June 2003
123
GAP Software A45 – 30 June 2003
123
GAP Software A46 – 07 July 2003
124
AWAN 3886 Software 234 – 11 July 2003
124
AWAN 3886 Software 235 – never released
124
AWAN 3886 Software 236 – 13 September 2003
124
GAP Software A47 – 14 September 2003
124
AWAN 3886 Software 237 – 07 October 2003
124
GAP Software A48 – 28 May 2004
124
AWAN 3886 Software 238 – 14 October 2004
124
AWAN 3886 Software 238 – 14 October 2004
124
AWAN 3886 Software 240 – 02 March 2005
125
AWAN 3886 Software 241 – 07 July 2006
125
GAP Software A49 – 17 July 2006
125

Chapter 1
- Introduction

Overview

The Gateway Access Process (GAP) was developed by Gemini to provide additional functions that compliment the standard feature set of the HP NonStop (formerly Compaq and Tandem) AWAN Access Server product designated as HP product numbers 3883, 3884 and 3885 (Access Beyond labels) and 3886 (DECserver, Cabletron, and Digital/DNPG labels). More information concerning the standard features of these server products can be found in the HP publications referenced on Page 2.

Typically, asynchronous terminal sessions from the AWAN are initiated using HP NonStop Telserv software running on the NonStop server. Certain advanced functions such as modem control, true full-duplex, and read continuous are not supported by Telserv. Gemini has designed GAP to provide these capabilities to AWAN server users.

GAP represents an open-ended platform for future capabilities as dictated by customer demand.

Application Programming Interfaces

The API’s presently available for the GAP product include ATAP and 6530. The Advanced Tandem Protocol (ATAP) API is a superset of the NonStop ATP6100 API with several new SETMODEs added to provide the new function. The ATAP API is described in detail in Chapter 5 of this manual.

The API of the Asynchronous Read Continuous, or ARC, software from CISCORP, Inc. is also supported by the GAP product with some limitations as discussed in Chapter 5.

The 6530 API supports 6530 terminals in block and ITI mode.

Hardware and Software Requirements

The GAP product will operate with all K-series and S-series NonStop servers utilizing NSK releases D4x or G0x. GAP uses the NonStop TCP/IP Socket Library to communicate with the AWAN server.

Typical Applications

The GAP is useful for implementing high speed full-duplex asynchronous file transfer protocols such as ZMODEM. One might use such an application to dial out to remote office computers to retrieve daily activity data in an unattended mode in the evening.

Another GAP application could be in attaching factory data collection devices that transmit bursts of unsolicited data without any flow control. The GAP working with the AWAN server will guarantee that no data is lost even during peak loading.

Print and broadcast media companies often use asynchronous wire service feeds that constantly transmit news stories. Using GAP, this data can be safely stored onto a database for later processing without risk of data loss.

The GAP may also be used to drive printers with or without the NonStop Spooler software.

Operational Overview

[image: image1.wmf]Tandem NonStop Server

Ethernet LAN

TCP/IP

GAP

Applications

GAP

Protocol

Data Collection

Port #1

Port #3

#port01

#port02

#port03

388x Server

Modem

Port #2

Serial printer

A sample GAP configuration is shown below in Figure 1-1.

Figure 1-1. Sample GAP Configuration

In this example, the GAP windows named #port01, #port02, and #port03 correspond to the modem, the printer, and the data collection device respectively. An application process would then open the file $gap.#port01 to gain access to the modem.

Flexible Deployment

A single AWAN server may be accessed simultaneously by multiple GAP processes which may reside on the same or different NonStop servers. In addition, a GAP process may access ports on one or more AWAN servers. Any combination of NonStop hosts, NonStop applications, and AWAN servers may work together regardless of their geographic locations.

Chapter 2
- Installation

Overview

This section describes the installation considerations for the GAP product.

DSV Contents

Table 2-1. DSV Table of Contents

Filename
File Code
Description

ARCDCMD
101
ATAPD sample commands for ARC

ATAPD
100
ATAP Demonstration Program object code

ATAPDCMD
101
ATAPD sample commands

ATAPDSRC
101
ATAP Demonstration Program source code

AWANCLI
100
Utility for CLI access from NonStop

AWANHELP
101
Help file for AWANCLI

GAPCHELP
101
Help text file in EDIT format

GAPCOM
100
GAP command interpreter

GAP
700
GAP Native Mode object for D40 and G0x

GAPI
800
GAP Native Mode object for H0x

GTRED
100
Diagnostic trace formatting program

LICENSE
101
Replace with license password file

RUNARCD
101
Obey file to run ATAPD ARC test

RUNATAP
101
Obey file to run ATAPD

SGAPTMPL
101
EMS template file source

STARTnn
101
Sample TACL startup obey files

ZGAPDDL
101
GAP event definitions

ZGAPTMPL
839
Compiled EMS template file

Distribution on NonStop Backup Tape

GAP can be distributed via a standard NonStop NSK Backup tape. The files described in the DSV table are backed up under subvol $SYSTEM.GAP. Use the standard RESTORE command to load the tape:

RESTORE $TAPE,*.*.*,LISTALL,TAPEDATE,VOL $SYSTEM.GAP,MYID

If installing over a previous copy of GAP, you will probably want to first make copies of LICENSE, STARTxx, and other changed files in the GAP subvol, or use a different subvol for the new software.

Distribution Via Diskette or Internet FTP

GAP can also be downloaded from the Gemini FTP site, geminic.com. The file downloaded from the FTP site is compressed using PKZIP with a password. Gemini requires an executed GAP Demonstration Non-Disclosure Agreement prior to shipping the software for evaluation.

If GAP is shipped on a floppy diskette, the same ZIP file format is used, although no password is required. In either case, the ZIP contains the following files:

GAPFTP.BAT
DOS batch file to upload GAPSFX

GAP.PAK
PAK file containing all NSK host files for GAP.

MANUAL.DOC
This manual in WinWord 6 format

README
Text file with host upload instructions

The GAP.PAK file should be binary transferred to the NSK host. GAPFTP.BAT can be run from a MS-DOS prompt or a DOS-Box:

Usage:

GAPFTP group.user password host-ip-address subvol
Example:

GAPFTP super.super Blast7 128.1.2.3 $system.gap

Alternatively, use another FTP client or other file transfer such as IXF to perform the binary transfer. After file GAPPAK is on the NSK host, use the standard UNPAK utility:

UNPAK GAPPAK,*.*.*,LISTALL,VOL $SYSTEM.GAP,MYID

The DSV is now loaded with the same files as described under “Distribution on NonStop Backup Tape”.

Configuring (Licensing) GAP

Prior to release A37. an EDIT file RUNCONF was used to run the CONFIG program which modified the GAP object file. This mechanism will be retained for compatibility, but will not be used for any new passwords.

Effective with release A37, an edit-101 file called LICENSE is used to store license information. Instead of the Expand Node Name and Expand Node Number used with the old RUNCONF scheme, LICENSE is based on the System Serial Number. Gemini will generate a license text file which should be placed as filename LICENSE into the GAP subvol along with the GAP object file. The LICENSE file should not be edited or modified in any way. The new LICENSE file avoids the need to modify the GAP object file and simplifies multi-system licensing.

To get the System Serial Number, run the SYSINFO utility program from a TACL prompt:

TACL> SYSINFO

SYSINFO - T9268D37 - (27 Nov 97) SYSTEM \S Date …

COPYRIGHT TANDEM COMPUTERS INCORPORATED …

System name

\SSS

EXPAND node number
237

Current SYSnn

SYS07

System number

044580

Software release ID
G06.14

The system number should be reported exactly as displayed by SYSINFO, Including any letters, or, as in the above example, leading zero(s). For simplicity, the entire output from SYSINFO can be provided to Gemini. Gemini will use the System Serial Number to generate a LICENSE file. This is a text file which should be transferred as a text (edit-101 format) file with the name LICENSE in the same subvol as the GAP object file:

Note that a LICENSE file can contain one or more System Serial Numbers. This allows a single LICENSE file to be used for multiple systems. Run the SYSINFO utility on each system to be licensed and provide all the System Serial Numbers to Gemini.

Starting with release A38, GAP must be licensed using either the new LICENSE file or the old CONFIG program. Formerly, GAP would run in a limited “trace only mode” even without any licensing. This allowed GAP to be used, without any license, to assist standard AWAN users to capture trace files. This could cause confusion if the license was not properly installed, since GAP would complete startup without any error, but would nevertheless reject subsequent ADD WINDOW commands. Effective with release A38, a valid LICENSE file containing a SYSNUM GENERIC record is required to run GAP in “tracing only mode”. Errors are minimized and new messages clearly report the status of GAP startup and license validation.

License Validation is as follows:

1 – If the CONFIG program has been run (“OBEY RUNCONF”) against this GAP object file, then only the CONFIG information is checked and the LICENSE file, if present, is ignored. If the CONFIG key is validated, GAP startup completes with the following message sent to EMS and the home terminal:

GAP License validated (Config key), expires <date>

If the expiration is within a month, an additional warning is sent:

GAP Warning: license expires in 31 days

If the system information does not match, the expiration date has been reached, or the CONFIG key has been corrupted, then GAP will terminate in error after displaying:

GAP License Exception (Config Key) <reason>

Contact Gemini support with the above information.

2 – If the CONFIG program has never been run against this GAP object file, then GAP reads the LICENSE file from the GAP subvol (the subvol containing the GAP object file). If the LICENSE file is validated, GAP startup completes with the following message:

GAP License validated, expires <date>

If the EXPIRE date is less than 32 days away, an additional warning is sent:

GAP Warning: license expires in <nn> days

If the LICENSE file is not present, cannot be read, has been modified, does not contains a SYSNUM record matching the system serial number, or the EXPIRE date has been reached, then GAP will terminate in error after displaying:

GAP License Exception <s1>/<s2> File: <file> Reason: <reason>

Contact Gemini support with the above information.

3 – If LICENSE has a valid EXPIRE date, does not have a SYSNUM record matching the current system serial number, but does have a SYSNUM GENERIC record, then GAP will operate in “tracing only mode” after displaying:

GAP Generic License file - only AWAN tracing permitted

If an ADD WINDOW command is attempted, it will be rejected with the following message, which appears both as a response to the GAPCOM command and to EMS:

GAP Feature <option> not licensed, ADD WINDOW rejected

4 – The INFO GAP command now also provides detailed information about the LICENSE file or CONFIG key, pending expirations, “tracing only mode”, and if the license has been refreshed.

5 – OPTIONS and SYSCLASS are no longer used. As long as a valid LICENSE file or CONFIG key is present, ATAP and 6530 options are now always both enabled, and GAP will run on any NSK system type.

6 - License validation is only performed at GAP process startup time. Once a GAP process is running, no further tests are made, and the GAP process will not terminate because of expiration dates, etc.

Daily 9:00 AM License Expiration Check

Every morning at 9:00 AM LCT, GAP checks the expiration date against the current date. IF the license has already expired, or will expire within 32 days, an EMS message is displayed, and, if a LICENSE file was used at GAP startup time (as opposed to RUN CONFIG), an automatic LICENSE^REFRESH is performed.

LICENSE^REFRESH

If a LICENSE file was used at GAP startup (as opposed to RUN CONFIG), the expiration can be extended by reading new LICENSE file that has been placed into the GAP subvol. This can occur automatically (see “Daily 9:00 AM” above) or manually (see GAPCOM command LICENSE^REFRESH).

1 – If the LICENSE file has a matching system serial number and has an expiration date newer than the original, then GAP will extend its operational expiration date. An EMS message to this effect is displayed.

2 – If the LICENSE file does not have a matching system serial number, or has an expiration date older that the original, or is otherwise unreadable, it is ignored.

3 – Subsequent INFO GAP commands will indicate that a LICENSE^REFRESH has been performed

Installing a new GAP LICENSE File

Once a GAP process has successfully started with a valid expiration date, the process will never stop just because the expiration date has been reached. However, running with a current license file is important to avoid problems if the GAP process needs to be restarted for any reason. Furthermore, there will be a warning EMS message every morning at 9:00 AM if GAP is running with a license that has already expired or will expire within 32 days.

Contact Gemini, or your GAP distributor, for a new GAP LICENSE file. If you want to be extra careful, you can validate the new GAP LICENSE file without interfering running GAP processes:

1 – Place the new LICENSE file into the GAP subvol. Alternatively, for extra precaution, FUP DUP the GAP object file into a new test subvol and move the new LICENSE file into that subvol. GAP always reads the LICENSE file from the same subvol as the GAP object file.

2 – From a TACL prompt, run GAP with a generic process name and a special parameter:

RUN GAP / NAME / LICENSE^CHECK

3 – GAP will validate the LICENSE and display messages on the home terminal and on the EMS log.

4 – Regardless of the result of the validation, this GAP process will immediately stop. Messages to this effect are displayed on the home terminal and on EMS.

5 – If an alternative subvol was used in step 1, move the LICENSE file into the production subvol and repeat LICENSE^CHECK.

6 – Use GAPCOM LICENSE^REFRESH for all running GAP processes. If this step is omitted, LICENSE^REFRESH will be automatically done the next morning at 9:00 AM.

7 – Remember that GAP licenses are keyed to system serial number, so they LICENSE^CHECK tests must be run on the specific licensed system.

Chapter 3
- Running GAP

Overview

This section includes information about:

· Running GAP

· A description of the PARAMs used with GAP.

Running GAP from TACL

To start GAP, use the standard TACL RUN command.

1> LOGON group.user,password

2> CLEAR ALL

3> PARAM ...

4> RUN gap / NAME $gap , NOWAIT /

Once the GAP process is started, GAPCOM is used to configure servers and ATAP windows and to adjust parameters.

You can use the following PARAM statements with GAP. (Undefined PARAMs generate EMS events and are bypassed.)

Alternatively, PARAM commands can be placed into an edit file which is referenced as the IN parameter:

1> LOGON group.user,password

2> CLEAR ALL

3> RUN gap / NAME $gap , IN <infile> , NOWAIT /

<infile> is an edit-101 file with PARAM commands in the same syntax as when used with TACL. Other lines besides PARAM commands may be present in <infile>, which is useful when PARAM GFTCOM^IN is used (see below). Any such lines are ignored during IN processing.

Running GAP as a Kernel Persistent Process

To start GAP, use the standard SCF commands to configure the Kernerl:

ADD PROCESS

GAP

, NAME

$GAP1

, PROGRAM

$SYSTEM.GAP.GAP

, INFILE

$SYSTEM.GAP.GAP1KIN

, STARTMODE

SYSTEM -or- APPLICATION

, USERID

SUPER.SUPER

, AUTORESTART
10

, PRIMARYCPU
0

, BACKUPCPU

1

INFILE should specify a file, unique for each GAP process started via the Kernel, with PARAM commands and also regular GFTCOM commands such as ADD SERVER, ADD WINDOW, etc. In particular, INFILE should include at a minimum

PARAM GFTCOM^IN $SYSTEM.GAP.GAP1KIN

This will start a GAPCOM which will process the commands in GAP1KIN and feed them into $GAP1. Note that this is the same file as the INFILE specified to the Kernel above; the same file contains PARAM commands and GFTCOM commands. PARAM GFTCOM^OUT is optional..

PARAM BACKUPCPU cpu

specifies the backup CPU number. The default is NONE. See the GAPCOM BACKUP/BACKUPCPU command for a description of available options.

PARAM GFTCOM^OBJECT filename

specifies the name of the GFTCOM object file to be used with PARAM GFTCOM^IN. Default is file GAPCOM in the GAP subvol. This PARAM is rarely used.

PARAM GFTCOM^IN filename

Immediately upon startup, GAP will start GAPCOM (see PARAM GFTCOM^OBJECT) and pass <filename> as the IN parameter, PARAM GFTCOM^OUT as the OUT parameter, and PARAM GFTCOM^PARAM as the RUN parameter, I.E.

RUN gftcom^object / IN gftcom^in , OUT gftcom^out / gftcom^param

<filename> should contain all ADD SERVER, ADD SCRIPT, ADD WINDOW, BACKUPCPU, and any other commands needed to configure this GAP process. <filename> may also contain PARAM commands, allowing the same file to be specified for GFTCOM^IN and for INFILE to SCF.

Default is no automatic start of GFTCOM.

PARAM GFTCOM^OUT filename

specifies OUT file when PARAM GFTCOM^IN is used. Default is the home terminal..

PARAM GFTCOM^PARAM <param>

specifies RUN GFTCOM parameter field for use with PARAM GFTCOM^IN. Default is “*”. A “*” (asterisk) is replaced by the GAP process name. GAPCOM needs to know which GAP process, so use either the default “*” (highly recommended) or hard-code the proper GAP process name. An example to specify the backup cpu number:

PARAM GFTCOM^PARM *;BACKUPCPU ANY

PARAM POOL^SIZE number

specifies the size in words of the extended segment memory pool used for control tables and I/O buffers. The default is 1,000,000 words. number can specify a decimal number optionally followed by the letter K (kilowords), which multiplies by 1,024, or by the letter M (megawords), which multiplies by 1,048,576.

PARAM SECURITY letter

defines security access required for sensitive GAPCOM commands. Sensitive commands are defined as commands that alter the application environment. Non-sensitive commands are those that only report status information without changing anything in the application. The default is O. Allowed values are from the set NAGCOU. These letters assign access as follows:

N
Any local or remote user

A
Any local user

G
A group member or owner

C
A member of the owner’s community (local or remote user with the same

group ID as the owner)

O
The owner only

U
A member of the owner’s user class (local or remote user with the same

user ID as the owner)

PARAM TRACE^SIZE number

specifies the size in bytes of the trace file when PARAM TRACE^FILE is used. number can specify a decimal number optionally followed by the letter K (kilobytes), which multiplies by 1,024, or the letter M (megabytes), which multiplies by 1,048,576. The default is 100K. PARAM TRACE^SIZE should precede PARAM TRACE^FILE.

PARAM TRACE^FILE trace-file

starts a trace file immediately. The size is determined by PARAM TRACE^SIZE. This file is created if it does not already exist. The trace file must refer to a local disk file. PARAM TRACE^FILE should follow PARAM TRACE^SIZE.

Sample Startup Obey Files

The GAP distribution subvolume contains sample TACL obey files with names of the form STARTnn which may be used to start the GAP process.

Chapter 4
Commands

Overview

This section describes all of the GAP commands. It includes information about:

· Running GAPCOM, the system operator interface that enables configuration, status, and maintenance requests

· A list and description of each of the GAPCOM commands

Running GAPCOM

GAPCOM is the system operator interface to GAP. GAPCOM provides for configuration, status, and maintenance requests. You can store your GAPCOM commands in an EDIT format disk file or enter them conversationally. You can direct your output to a terminal, printer, disk file, or spooler. Standard OBEY and FC commands are provided. A built-in HELP command is used; you can easily change the HELP dictionary or extend it to conform to local requirements by modifying the supplied GAPCHELP EDIT file.

When GAPCOM is run, an implied OPEN $GAP command is issued prior to prompting for input.

To start GAPCOM, use the standard TACL RUN command, as shown in the following examples:

1> RUN gapcom $gap

2> gapcom $gap1 ; info server * ; e

3> gapcom / IN gapin4 , OUT $s /

4> gapcom $gap1 ; TRACE $system.gap.trace3,1M ; e

Following is a sample GAP startup:

1> CLEAR ALL

2> RUN gap / NOWAIT , NAME $gap /

3> gapcom $gap;&

 ADD SERVER ab1,SUBNET $ztc0,IPADDR 129.23.4.5; &

 INFO SERVER ab1; E

GAPCOM Command Summary

Table 4-1 summarizes the GAPCOM commands:

Table 4-1. GAPCOM Command Summary

Command
Function

ABORT
Aborts a SERVER or WINDOW

ADD
Adds a SERVER, SCRIPT or WINDOW

AUTO^ADD
Controls the automatic ADD WIN on application open

BACKUP[CPU]
Creates a GAP backup process

COMMENT
Allows insertion of comments into GAPCOM input files

CONNECT
Identify a server to receive CTRACE commands

CONNECT^TIMEOUT
Time to allow for TCP/IP socket connect to AWAN

CTRACE
Controls diagnostic tracing in the AWAN server

DEFAULT
Establishes a default SERVER, TYPE or SCRIPT

DELETE
Removes a WINDOW or SCRIPT

EXIT (E)
Terminates GAPCOM

FC
Invokes the NonStop Fix Command

HELP
Provides online help documentation to GAPCOM users

INFO
Displays configuration for GAP or for PROCESS, SERVER, WINDOW, or SCRIPT objects, and LICENSE information

KEEPALIVE
Specifies the keepalive message frequency to the server

LICENSE^MONITOR
Force an immediate “9:00 AM” expiration check

LICENSE^REFRESH
Reads a new LICENSE file

LISTOPENS
Displays processes which have a GAP process open

OBEY (O)
Process commands from an EDIT format disk file

OPEN
Directs GAPCOM to a specific GAP process

PENDING^140
Guarantees file error code 140 on session disconnect

POOL
Displays buffer pool usage statistics

RECONNECT^DELAY^MIN
Minimum delay until automatic retry of port connection

RECONNECT^DELAY^MAX
Maximum delay until automatic retry of port connection

SECURITY
Sets GAP access security

SHUTDOWN
Terminates GAP

START
Starts a SERVER or WINDOW object

STATUS
Displays current WINDOW or SERVER status

STOP
Stops a SERVER or WINDOW

VERSION
Displays the GAP process revision number and date

ABORT SERVER

ABORT SERVER immediately terminates a server connection. Any configured windows associated with the specified server(s) will be aborted as well.

ABORT SERVER { server-name | * }

server-name
specifies a server to be aborted.

*

aborts all configured servers

ABORT WINDOW

ABORT WINDOW immediately terminates a window session.

ABORT WIN[DOW] { window-name | * }

ABORT WIN[DOW]

WIN and WINDOW are equivalent.

window-name
specifies a window to be aborted.

*

aborts all configured windows.

ADD SCRIPT

ADD SCRIPT defines a script to the open GAP process. The script is comprised of one or more SETMODE command definitions which are executed when a window session is established and after setmode 28.

ADD SCRIPT script-name entry [entry]
script-name
defines the script uniquely: starting with a letter, then optionally followed by letters or numbers up to 12 characters maximum. The server name is referenced in the ADD WINDOW and DEFAULT SCRIPT commands.

entry

is preceded by one or spaces and has the format:

type [, [parm1] [, parm2]]

where

 type
is the SETMODE type.

parm1
is SETMODE parameter 1
parm2
is SETMODE parameter 2.

Values may be in decimal, or in hex preceded by “%h”.

Following is an example script s1 to set baud rate to 115,200 and the interrupt characters to ctrl-H, ctrl-X, ctrl-Y, and ctrl-M:

add script s1 22,35 9,%h0818,%h190d

If a script referenced in an ADD WINDOW command is defined when the window is opened or when setmode 28 is performed, the script file entries are sent as Setmode commands to the port in the order specified. No checking is performed on the script parameters before sending the Setmode request to the AWAN server, and no display or checking is done with the Setmode completion status.

Note that the script names specified in DEFAULT SCRIPT and ADD WINDOW commands need not be defined by ADD SCRIPT until the window is opened. If the script configured for a window is unavailable at window open time, the script feature is bypassed.

If a script is changed (by DELETE SCRIPT and ADD SCRIPT), it will take effect only on the next setmode 28 or next connection to the port.

Either or both parameters may be omitted, in which case the operation is as defined for the particular setmode. With GAP releases A44 and earlier, omitted parameters defaulted to zero, which was led to confusion and configuration difficulty. The following sample script and sequence of setmode calls are equivalent:

add script s2 300 301,2 302,,3 303,4,5

call setmode (fnum , 300) ;

call setmode (fnum , 301 , 2) ;

call setmode (fnum , 302 , , 3) ;

call setmode (fnum , 303 , 4 , 5) ;

ADD SERVER

ADD SERVER adds a server (AWAN) connection to the open GAP process.

ADD SERVER server-name
 ,SUBNET tcp-name
 ,IPADDR ip-address
 [,SEC^SUBNET tcp-name
 ,SEC^IPADDR ip-address]

 ,SRCPORT portnum

 ,DEFAULT

server-name
defines the server uniquely: starting with a letter, then optionally followed by letters or numbers up to 8 characters maximum. The server name is referenced in the ADD WINDOW and DEFAULT SERVER commands.

SUBNET tcp-name
refers to a TCP/IP driver process, examples:

$ZTC0

$ZB01C

IPADDR ip-address
specifies the IP address of the server, either as a dotted numeric address or as a DNS name.

WARNING: DNS name resolution, in the event of network failure, network congestion, or name server failure, can take seconds or even minutes. During this time ALL activity in GAP is suspended. Therefore it is recommended that DNS names only be used (a) when a local host file is used instead of an eternal name server, or (b) only one AWAN server is configured per GAP process to avoid interference with GAP activity on other AWAN devices.

SEC^SUBNET and SEC^IPADDR

Refers to a second path to use if the first path (specified by SUBNET and IPADDR) are not available. SEC^SUBNET usually refers to a different TCP/IP driver process than SUBNET, while SEC^IPADDR is usually identical to IPADDR. This allows a certain measure of fault-tolerance against failures of TCP/IP processes, cpu, ethernet controllers, and network routes. Since AWAN hardware only supports a single network interface and single IP address, generally SEC^IPADDR is the same as IPADDR. However, SEC^IPADDR can be set to a different value than IPADDR (in this case SUBNET and SEC^SUBNET can be the same or different values), which actually refers to two different AWANs. This offers an additional measure of fault-tolerance, but careful consideration must be given to matching the AWAN configurations, asynch ports, etc.

As with IPADDR, SEC^IPADDR can refer to a dotted numeric address or a DNS name, with the same warning as discussed above under IPADDR.

SRCPORT <port-num>

SRCPORT <low-num> - <high-num>

Controls the soruce TCP/IP port number used on the NonStop TCP/IP side of the connection to an AWAN. The prot number at the remote (AWAN) end of the connection is always 2500. If SRCPORT is zero (default), GAP uses the next available port number as assigned by the TCP/IP process. This is compatible with A47 and earlier releases. When a specific port number is required by a network firewall, etc, SRCPORT specifies a single port number or a range of port numbers. If a single number is specified, GAP will attempt to bind to the specified port number. If that port is already in use, GAP will not be able to contact the AWAN, and an EMS message will be generated. If a range of port numbers is specified, GAP will attempt to bind to the ports in the specified order until successful. If none of the ports are available, GAP will not be able to contact the AWAN, and an EMS message will be generated.

DEFAULT

defines this server as the default server for subsequent ADD WINDOW commands..

ADD WINDOW

ADD WINDOW creates a static window and associates it with a server.

ADD WIN[DOW] window-name
 [,PORT { port-number | ANY }]

 [,SCRIPT script-name]

 [,SERVER server-name]

 [,TYPE { ATAP | 6530 }]

 [,DEVTYPE (type , subtype)]

 [,WRITE^DEPTH write-depth]

 [,RECLEN record-length]

ADD WIN[DOW]

WIN and WINDOW are equivalent.

window-name

specifies a window to be added.

The window name follows window-name rules: a pound sign (#) followed by a letter, then 0 to 6 letters or digits.

The window name qualifies the file name used in NonStop applications to open GAP files (for example, $GAP.#WIN1).

PORT port-number | ANY

consists of a port number from 1 to the maximum number of ports available on the server in question or ANY. If omitted, ANY will be the default. ANY is not supported for 3886.

SCRIPT script-name
If the server field is omitted, the DEFAULT SCRIPT, if any, is used for this window. If DEFAULT SCRIPT *NONE* is specified, and the script field is omitted in the ADD WINDOW command, no script functions will be performed when the window establishes a session. See the ADD SCRIPT command description above for more information on the script feature.

SERVER server-name
Refers to the name from ADD SERVER.

If the server field is omitted, the DEFAULT SERVER, if any, is used for this window. If DEFAULT SERVER *NONE* is specified, and the server field is omitted, an error is indicated.

TYPE ATAP | 6530

specifies the session type as ATAP for specialized asynchronous functions or 6530 for terminal function. If TYPE is not specified the current DEFAULT TYPE setting will dictate the window type. For 3883/4/5. this WIN TYPE must match the PORT TYPE at the AWAN. For 3886, PORT AWAN ATAP is used regardless of the ADD WINDOW TYPE setting.

 DEVTYPE (type , subtype)

specifies the device type and device subtype that the GAP will return in response to an application DEVICEINFO call. Values for type and subtype may range from 0 to 63. For type ATAP windows the default is (6, 0) whereas for type 6530 windows the default is (6, 4).

Applications which used the ARC (Async Read Continuous) software from CISCORP generally require DEVTYPE (6,0) or (6,1). See Setmode 215 for additional information.

WRITE^DEPTH write-depth
specifies the number of consecutive write operations from GAP to the AWAN before an acknowledgment if required back from the AWAN. When WRITE^DEPTH is zero (default) or one, GAP does not complete file system write requests from the application until the AWAN has transmitted the data to the asynch port and has reported an acknowledgment back to GAP. If there is a significant network delay between GAP and the AWAN (i.e. the Ping response time is long), this can seriously degrade performance for applications which perform a large number of consecutive write operations. The effect is more noticeable with shorter writes, such as single lines. WRITE^DEPTH can be increased up to 25 to allow overlap of these write operations. If a transient write error occurs, the error code may be lost when WRITE^DEPTH is non-zero.

RECLEN record-length
specifies the record length the GAP will return in response to an application DEVICEINFO call. Values from 0 to 32767 are permitted. The default is 80.

AUTO^ADD

AUTO^ADD controls the automatic creation of windows. This can greatly simplify configuration files in Pathway and TACL.

To display the current setting of this parameter, use the INFO PROCESS command.

AUTO^ADD { Y | N }

Y | N

defaults to Y. When set to Y, if an application opens $GAP with a qualifier which does not correspond to a defined window, GAP attempts to perform the following command:

ADD WIN #name
where #name was specified in the application open. The window will be added to the default AWAN server. If the window cannot be added, the open request is rejected. Messages are logged for failed automatic add requests.

BACKUP / BACKUPCPU

BACKUPCPU controls the application backup process. BACKUP is a synonym for BACKUPCPU.

BACKUPCPU cpu

cpu can be one of the following:

?

displays the current setting, along with the current backup status.

NONE

stops a backup process if one is already running. No new backup processes are created.

number
specifies a number in the range 0 through 15 inclusive. The application will use the specified CPU for its backup process. If a backup process is already running, it is stopped. A new backup process is created in the specified CPU.

BUDDY

toggles the low-order bit of the primary CPU number to determine the backup CPU number. This pairs CPUs for backup purposes in even-odd groups (0 to 1, 2 to 3, ... 14 to 15). This avoids the problem of configuring a specific CPU number.

If a backup process is already running, it is stopped. A new backup process is created in the specified CPU.

ANY

uses any available CPU for the backup process. The first attempt is with the buddy CPU; if that fails, other CPUs are then used starting with CPU numbers closest to the primary until a backup is successfully started. This method assures that a backup will be created in all cases where any two CPUs are available. If a backup process is already running, it is stopped. A new backup process is created in the appropriate CPU.

COMMENT

COMMENT allows insertion of commentary text into GAPCOM input files.

COMMENT text
text
specifies the comments to be inserted into GAPCOM input files. The text can include anything except a semicolon.

CONNECT

CONNECT establishes a server to which subsequent CTRACE commands can be sent.

CONNECT server-name
server-name
specifies the server to be used for CTRACE commands.

The CONNECT command is only required if more than one server is known to the GAP process.

CONNECT^TIMEOUT

CONNECT^TIMEOUT sets the maximum time to allow a TCP/IP socket connection to an AWAN to be established.

CONNECT^TIMEOUT timeout
timeout
specifies the timeout in seconds, in the range 10 (10 seconds) to 120 (2 minutes). The default is 20 (20 seconds). Note that TCP/IP, depending on configuration settings, normally will timeout a connect request in about 93 seconds.

Timeouts generally occur when the AWAN is powered off or disconnected from the network, or the network path from the NSK to the AWAN is down. Prior to GAP A31, only the timeout imposed by TCP/IP was used (typically about 93 seconds). The default is now set to a lower value (20 seconds) to allow for faster recovery.

CTRACE

CTRACE controls the diagnostic trace feature of the Access Beyond server. A previous CONNECT command is generally required.

CTRACE ON [SELECT (select-list)] [PORT[S] (port-list)]

CTRACE OFF

CTRACE SELECT (select-list)

CTRACE PORT[S] (port-list)

CTRACE STATUS

ON

ON causes the trace to be enabled in the currently CONNECTed server (see the CONNECT command below). If only one server is configured, an implicit CONNECT command is executed and the CTRACE command applies to that server. All ports are traced unless the PORTS field is specified. All record types are traced unless the SELECT field is specified.

OFF

disables the trace in the currently CONNECTed server.

STATUS

displays the status of ON/OFF, SELECT, and PORTS

PORT or PORTS

A list of port numbers, separated by commas, or the keyword ALL to select all ports. Port numbering is the same as for CLI Show Port. Only activity for the specified port(s) will be captured.

SELECT

A list of record type keywords, separated by spaces, or the keyword ALL to select all record types. This should only be used as directed by Gemini support staff.

Note. The trace data gathered is sent to the GAP process to be written to the GAP trace file. Therefore the GAP trace must be first enabled using the TRACE command described below.

DEFAULT SERVER

DEFAULT SERVER specifies a server name to be used as a default for ADD WINDOW commands. DEFAULT SERVER also applies to automatically added dynamic windows.

To display the current setting of this parameter, use the INFO PROCESS command.

DEFAULT SERVER { server-name | *NONE* }

server-name
specifies the server to be used for subsequent ADD WINDOW commands that do not specify a server field. This is the name from ADD SERVER.

NONE

disables the default server name. ADD WINDOW commands without a server field are rejected.

DEFAULT SCRIPT

DEFAULT SCRIPT specifies a script name to be used as a default for ADD WINDOW commands. DEFAULT SCRIPT also applies to automatically added dynamic windows.

To display the current setting of this parameter, use the INFO PROCESS command.

DEFAULT SCRIPT { script-name | *NONE* }

script-name
specifies the script to be used for subsequent ADD WINDOW commands that do not specify a script parameter.

NONE

disables the default script name.

DEFAULT TYPE

DEFAULT TYPE specifies a window type to be used as a default for ADD WINDOW commands. DEFAULT TYPE also applies to automatically added dynamic windows.

To display the current setting of this parameter, use the INFO PROCESS command.

DEFAULT TYPE { ATAP | 6530}

ATAP

specifies the ATAP window type which requires access by applications using the ATAP API described below.

6530

specifies a 6530 window type.

DELETE SCRIPT

DELETE SCRIPT removes a previously added script from the configuration.

DELETE SCRIPT { script-name | * }

script-name
specifies a script to be deleted.

*

specifies all scripts are to be deleted.

DELETE WINDOW

DELETE WINDOW removes a previously added window from the configuration. Dynamic windows are automatically deleted upon session termination. Windows created by AUTO^ADD^WIN Y are automatically deleted when all applications using the window terminate or close the window.

DELETE WIN[DOW] window-name
DELETE WIN[DOW]

WIN and WINDOW are equivalent.

window-name
specifies a window to be deleted.

EXIT

EXIT stops GAPCOM. This is the normal method of terminating an GAPCOM session. GAP is not affected. There are several forms of the EXIT command:

EXIT

E

control Y

eof on disc or process IN file

eof

in an OBEY file, returns to the previous OBEY file or IN file, and does not terminate GAPCOM.

FC

FC provides a typical FC facility; see NonStop TACL or EDIT documentation for a full description.

Like the EDIT product’s implementation, GAPCOM allows FC to be combined with other commands on a line. When an FC command is combined in this manner, it takes effect after all other commands on the line are processed; then the FC applies to the entire line, including the FC itself.

FC commands are not allowed in OBEY files, or when the IN file is not the same as the OUT file.

FC

FC

repeats the preceding command.

HELP

HELP provides online documentation to GAPCOM users.

The HELP file, named GAPCHELP, is located in the same volume and subvolume as the GAPCOM program object file. The file is in standard NonStop EDIT file format, with

lines of text formatted according to certain rules. These rules are explained in comment lines within the GAPCHELP file itself; list this file with EDIT or FUP for more documentation.

HELP [ALL]

 [command]

HELP

displays a summary of the HELP file.

HELP ALL

displays all HELP information.

HELP command
displays all HELP file information for the specified command.

INFO PROCESS

INFO PROCESS displays the setting of global parameters.

INFO PROCESS

INFO PROCESS

shows the current settings for:

· AUTO^ADD

· CONNECT^TIMEOUT

· DEFAULT SCRIPT

· DEFAULT TYPE

· KEEPALIVE

· PENDING^140

· OPEN^TIMEOUT

· OPEN^TIMEOUT^FE

· REPLY^ERR^ABEND

· LICENSE file parameters or indication that CONFIG key used

· Expiration date and days remaining until expiration

· Indication when “tracing only mode” is in effect

· Indication when automatic or manual LICENSE^REFRESH has extended the expiration date

INFO SCRIPT

INFO SCRIPT displays the contents of a script object or the contents of all configured script objects.

INFO SCRIPT { script-name | * }

script-name
specifies the script of interest.

*

specifies all configured scripts.

INFO SERVER

INFO SERVER displays static configuration information about a specified server or all servers. This information includes:

· The server name

· The subnet name

· The IP address of the server

· The version identification string from the server

INFO SERVER { server-name | * }

server-name
specifies the server of interest.

*

specifies all configured servers.

INFO WINDOW

INFO WINDOW displays static configuration information about a specified window or all configured windows. This information includes:

· The window name

· The server name

· The port number

· The window type

· The associated startup script, if any.

· The device type, subtype, and record length

INFO WIN[DOW] { window-name | * }

INFO WIN[DOW]

WIN and WINDOW are equivalent.

window-name
specifies the window name of interest.

*

specifies all configured windows.

KEEPALIVE

KEEPALIVE controls the frequency of keepalive message traffic from GAP to the AWAN access server, and determines the circuit timeout interval. The circuit timer is 2.5 times the KEEPALIVE interval. If no message is received from the AWAN for the circuit timeout interval, the AWAN is presumed disconnected. This allows time for at least two keepalive messages to be sent by GAP, and also time for the AWAN to respond, before considering the connection lost. The circuit timeout is set to a minimum of 25 seconds even if KEEPALIVE is less than 10.

GAP sends a circuit timeout parameter message to the AWAN when contact is first made from GAP to the AWAN and again whenever a KEEPALIVE command is used. The value for the circuit timeout is 2.5 times the KEEPALIVE parameter setting plus an additional 10 seconds. This parameter is used by AWAN 3886 (version gem217 and later) software to set the timeout for a lost GAP-AWAN connection from the AWAN side. This new GAP message is ignored by AWAN 3886 software prior to gem217 and by AWAN 3883/4/5 firmware, both of which use a fixed 330 second (5.5 minute) timeout.

KEEPALIVE seconds

seconds

specifies the keepalive message frequency in seconds. The default is 20, and the allocable range is 5 to 300.

KILLOPEN

KILLOPEN deletes an open table entry. This is used in the very rare case when an application has terminated but GAP still has an open table entry (shown by LISTOPENS). If the application is, however, still active, KILLOPENS will force I/O error fecode 66 to any subsequent I/O from the application. KILLOPENS is a manual variation of the operation performed by VERIFYOPENS.

Use this command with caution.

KILLOPEN <otx>

LICENSE^MONITOR

LICENSE^MONITOR forces an immediate “9:00 AM” license expiration check. If the license is expired, or will expire within 32 days, an EMS message is displayed and an attempt is made to automatically refresh the license.

LICENSE^MONITOR

LICENSE^REFRESH

LICENSE^REFRESH rereads the LICENSE file. If the LICENSE file is valid and specifies a newer expiration date than the running GAP process, the expiration date will be extended. EMS messages will be displaed.

LICENSE^REFRESH

LISTOPENS

LISTOPENS displays all applications that have GAP open.

LISTOPENS <otx>

LISTOPENS

displays one line for each OPEN of the application by another process. If <otx> is omitted, the list starts at entry 1; otherwide it starts at the specified entry. When a long LISTOPENS display is truncated, <otx> can be specified to continue the report.

The following three example output lines are folded due to printer limitations:

1. G083I process.term [cpu,pin] fnum userid programfile

 home [backup]

2. 1 $TCP1.#W742 1,47 fn=6 id=20,33 $SYSTEM.SYSTEM.PATHTCP

 $TERM4 bak=2,52 fn=6

3. 2 \CENTDIV.01,050.#COMMAND.COMMAND fn=3 id=255,255

 $SYSTEM.SYSTEM.GAPCOM $OSP

These three example output lines represent the following:

1) Title line

2) Indicates that:

· This entry has open table index 1

· The named process $TCP1 (cpu,pin=1,47) has opened the application with a terminal name of #W742 as file number 6

· $TCP1’s process access ID is group,user=20,33

· $TCP1’s object program file name is $SYSTEM.SYSTEM.PATHTCP

· $TCP1’s home terminal is $TERM4

· $TCP1’s backup process (cpu,pin=2,52) has checkopened the application with file number 6

3) Indicates that:

· This entry has open table index 2

· The unnamed process running on node \CENTDIV with cpu,pin=1,50 has opened the application with terminal name #COMMAND.COMMAND as file number 3

· The #COMMAND.COMMAND terminal name indicates an GAPCOM requester

· The program is running under group,user=255,255 (SUPER.SUPER) from object program file name $SYSTEM.SYSTEM.GAPCOM with home terminal

$OSP

OBEY

OBEY processes GAPCOM commands from an EDIT format file.

OBEY edit-file-name
edit-file-name

specifies the EDIT file in which the commands are listed. Commands can be nested up to six levels deep.

OPEN

OPEN opens the specified GAP process for subsequent commands.

OPEN GAP-process-name
GAP-process-name
specifies the process to be opened. If another process is already open, that process is closed.

If the OPEN fails, all GAPCOM commands requiring an application are rejected until a successful OPEN is completed.

The version command is automatically performed after every OPEN command.

Examples:

OPEN $GAP

OPEN \THERE.$GAP4

OPEN^TIMEOUT

OPEN^TIMEOUT controls the time that an application OPEN request will wait for GAP to contact an AWAN when the AWAN is not available or the network path to the AWAN is down. If GAP is able to contact the AWAN, then all OPEN requests are processed immediately with either a normal file error code 0 (feok) when the port open is successful or abnormal file error code (non-zero) if the port is already in use, or is not properly configured as an ATAP port. If GAP is not in contact with the AWAN, GAP automatically attempts to reconnect to the AWAN periodically until contact is made; any pending OPEN requests are then automatically processed. Some applications, notably PSPOOL and similar third-party print processes, expect OPEN requests to complete promptly. OPEN^TIMEOUT and OPEN^TIMEOUT^FE allow configuration for such applications.

OPEN^TIMEOUT seconds

seconds
specifies the timeout in seconds, in the range 1 (1.0 seconds) to 600 (10.0 minutes) and zero are allowed. A value of zero (the default) disables the timeout, allowing application OPEN requests to wait forever; if the timeout expires and contact has not been established to the AWAN, pending OPEN requests are then rejected with the file error code specified by OPEN^TIMEOUT^FE.

The current setting for this parameter can be displayed by the INFO PROCESS command.

OPEN^TIMEOUT^FE

OPEN^TIMEOUT^FE controls the file error code returned for OPEN requests that are rejected due to OPEN^TIMEOUT.

OPEN^TIMEOUT^FE file-error-code

File-error-code

specifies the NSK file error code to reply to any pending OPEN requests which have timed out (see OPEN^TIMEOUT). Values from 1 to 9999 are allowed; the default is 66 (fedevdown).

The current setting for this parameter can be displayed by the INFO PROCESS command.

PENDING^140

PENDING^140 controls the guaranteed return of at least one file error code 140 (modem error) to each opener of a window when a disconnect occurs.

This only concerns openers of windows that are disconnected and automatically reconnected. A disconnect occurs when the AWAN async port is logged out by a GUI Reset Port command, a CLI Logout Port <x> command, or other reason.

To display the current setting of this parameter, use the INFO PROCESS command.

PENDING^140 { Y | N }

Y | N

defaults to Y. When set to Y, if an opener of a window has no active I/O requests pending at the time of a disconnect, then that open will be marked as "pending^140". If the opener issues its next I/O request after the automatic reconnect of the window, that I/O request from the application will be rejected with file error 140, and "pending^140" state will be cleared for that opener.

This guarantees that the application will be notified of a disconnect even if no I/O requests were active at the time of disconnect. This might occur if the application were suspended or busy between terminal I/O.

If one or more I/O requests were active for the opener at the time of disconnect, then those I/O request(s) will be completed with file error 140 and "pending^140" state is not set.

The above applies separately for each opener of the window; every single file system open of the window has "pending^140" independently handled according to the above rule.

When set to N, operation is compatible with GAP release A16 and earlier. Any I/O requests active at the time of disconnect are completed with file error code 140, and an opener that has no I/O requests active at the time of disconnect would not be notified of the disconnect.

Note that the automatic reconnect of a window is delayed for 5 seconds after disconnect to avoid thrashing. Any I/O request received during this time will be completed with file error 140 regardless of the setting of PENDING^140.

POOL

POOL verifies the integrity of the entire buffer pool and provides useful information for tuning PARAM POOL^SIZE.

POOL

TOTAL SIZE

shows word size of pool.

IN USE

shows words currently in use in the user buffer area.

HIGH

shows the highest value of IN USE since process startup or the most recent backup takeover.

GETS

shows total number of buffer allocation requests.

PUTS

shows total number of buffer releases.

REJECTS

shows the number of requests that failed due to pool exhaustion or fragmentation.

TRIMS

shows the number of trims (where a large buffer is allocated and the unneeded trailing portion is released while the front part is still used).

BUFS IN USE

shows number of buffers allocated, not yet released. HIGH specifies the highest value of BUFS IN USE.

$RECEIVE msgs

shows total user data and system messages on $RECEIVE.

BYTES RCVD

shows total bytes read on $RECEIVE.

BYTES REPLIED

shows total bytes replied to $RECEIVE.

RECONNECT^DELAY^MIN and RECONNECT^DELAY^MAX

When a port is disconnected GAP, or upon the failure of a initial connection attempt caused by an application open of a GAP window, GAP delays for a time and then automatically attempts reconnection to the port. The first delay is for RECONNECT^DELAY^MIN seconds. On repeated reconnect failures, the delay time is successively tripled until RECONNECT^DELAY^MAX seconds. This method insures prompt reconnection for typical cases of modem hangup, etc., where the port will be quickly available for reconnection. In the case of long connect delays (port in use by some other application), increasing delays avoid excessive overhead. This parameter is rarely changed.

RECONNECT^DELAY^MIN seconds

RECONNECT^DELAY^MAX seconds

seconds

RECONNECT^DELAY^MIN specifies the initial delay time in seconds. The default is 1 (1 second) and the range is 1-10 (1 to 10 seconds).

RECONNECT^DELAY^MAX specifies the maximum delay time in seconds. The default is 60 (1 minute) and the range is 5-120 (1 seconds to 2 minutes).

REPLY^ERR^ABEND

This is a debugging feature to help analysis of REPLY error 74. Since these errors almost always indicate an internal GAP error.

REPLY^ERR^ABEND{ Y | N }

Y | N

defaults to Y. If GAP detects an internal REPLY error, GAP will abend, which will create a ZZSAnnnn dump file. Forward this file to Gemini for analysis.

N disables the abend. An EMS log message will still be generated, but GAP will continue operation. Note that one or more application messages may have been discarded or misrouted. This setting is not recommended, but may be used to permit continued GAP operation in the presence of REPLY errors.

SECURITY

SECURITY displays and modifies the application’s security setting. This setting is initially established by the PARAM SECURITY command, with a default of O.

SECURITY [letter]

l

If the parameter is omitted the current setting is displayed. The value O is the default.

letter
sets the security to the specified letter, which must be from the set NACGUO with standard NonStop file security interpretation. These letters assign access as follows:

N
Any local or remote user

A

Any local user

G
A group member or owner

C
A member of the owner’s community (local or remote user with

the same group ID as the owner)

O
The owner only

U
A member of the owner’s user class (local or remote user with

the same user ID as the owner)

The SECURITY letter controls access to sensitive commands by GAPCOM users. Sensitive commands are defined as commands that alter the GAP configuration or operation. Sensitive commands can only be performed by GAPCOM users with a user ID matching the SECURITY setting. Non-sensitive commands, such as STATUS, INFO, and LISTOPENS, can be performed by any user ID.

SHUTDOWN

SHUTDOWN initiates an immediate GAP process termination. All active sessions are terminated. There are no parameters.

SHUTDOWN

You can also use the TACL STOP $process command.

START SERVER

START SERVER starts a specific server or all servers. START SERVER is only needed after a STOP SERVER or ABORT SERVER.

START SERVER { server-name | * }

server-name
starts a specified server.

*

starts all servers.

START WINDOW

START WINDOW activates a window. START WINDOW is only needed after a STOP WINDOW or ABORT WINDOW.

START WIN[DOW] { window-name | * }

START WIN[DOW]

WIN and WINDOW are equivalent.

window-name
specifies the window to be started.

*

indicates that all configured windows are to be started.

STATUS SERVER

STATUS SERVER displays the status of all active servers. The following information is displayed for each server:

· Operational status

· STOPPED: Requires START SERVER to restart

· CONNECTING: Attempting to contact the AWAN server

· IN SESSION: Means a session is in place.

· SUBNET name and IP address

· Primary or secondary subnet/ipaddr in use

· Timestamp of this connection, if any

· Number of messages and bytes in and out

STATUS SERVER { server-name | * }

server-name
displays the status for a specified server.

*

displays the status of all servers.

STATUS WINDOW

STATUS WINDOW displays the status of a specified window or for all configured windows. The following information is displayed for each window:

· STOPPED: Requires START WINDOW to restart

· STARTED: Waiting for an application and/or a remote workstation

· IN SESSION: Means a session is in place.

STATUS WIN[DOW] { window-name | * }

STATUS WIN[DOW]

WIN and WINDOW are equivalent.

window-name
specifies the name of the window to be displayed.

*

displays status for all configured windows.

STOP SERVER

STOP SERVER immediately terminates the specified server session or all active server sessions as well as any associated window sessions.

STOP SERVER { server-name | * }

server-name
refers to a server that is in session with the GAP process. This session is terminated.

*

terminates all active sessions.

STOP WINDOW

STOP WINDOW immediately terminates the specified window or all active windows.

STOP WIN[DOW] { window-name | * }

STOP WIN[DOW]

WIN and WINDOW are equivalent.

window-name
specifies the name of the window to be stopped.

*

terminates all active windows.

TRACE

TRACE controls program tracing. The GAP trace is implemented via an extended data segment (edseg) that is associated with a user-specified disk file. GAP creates trace entries by direct memory access to the edseg. When the trace is stopped, or if GAP stops for any reason, the NonStop system flushes all remaining information from the edseg to the disk file.

You can control the trace file size. When the end of the trace file is reached, it wraps around back to the beginning, overwriting the oldest record in the file. The file can wrap repeatedly, storing the last size bytes of trace data. The combination of fast trace writes and the wraparound storage lets you run the trace continuously to catch intermittent problems. Simply set the trace file size to a large enough value to ensure that you have enough time after detection of the problem to stop the trace without losing any information.

TRACE { ? | OFF | RESET | [ON] filename [,size] }

?

displays the current status and setting of the trace file and all parameters.

OFF

stops the trace.

RESET

resets the trace file pointers, effectively restarting the trace, but without the overhead of stopping and starting the trace again.

ON filename [,size]

starts a trace on the specified unstructured disk file.

filename should be fully qualified; if it is not qualified, the default volume and subvolume in effect at the time the GAP application was started are used, not the defaults from the GAPCOM startup. If the file name does NOT begin with $ or \, the keyword ON is required.

A file of the specified size will be created. If a trace is already open, it is first closed. The trace file can specify the same name as an already active trace file. In that case, the trace file is rewritten. The TRACE RESET command is more efficient for this purpose.

size

determines the byte length of the trace file. The number can be followed by the letter K (kilobytes) which multiplies by 1,024, or the letter M (megabytes) which multiplies by 1,048,576. The default is 100K. The minimum is 12K and the maximum is 25M.

VERIFYOPENS

VERIFYOPENS checks all applications open to GAP (see LISTOPENS) to verify that the application process is still running. If the application is no longer running, the associated open table entry will be deleted. This command is very rarely needed. Unlike KILLOPENS, VERIFYOPENS will only delete open table tnetires that are verified to be unused.

VERIFYOPENS

VERSION

VERSION displays the name, revision number, and revision date of GAP. There are no parameters.

VERSION

Chapter 5
- ATAP API

Overview

This chapter discusses the GAP API for the Advanced Tandem Asynchronous protocol (ATAP) . This API is based upon the NonStop ATP6100 API for the 6100 series communications controllers. Where possible the ATAP API is compatible with ATP6100 with extensions added for addition function.

Server Contact and Port Connect

GAP automatically establishes "Contact" with remote AWAN servers configured by the Add Server command. Once Contact is established, Port Connect requests can be processed. GAP sends a Port Connect request to the remote server when the first application open is received for a GAP window. GAP sends a Port Disconnect request to the remote server one second after the last remaining application open to the GAP window is closed, or when a Stop Window or Abort Window command is performed. Server Contact is maintained unless some network error occurs, the remote server is reset, or Stop Server or Abort Server is performed.

Application Open

GAP distinguishes between the first application open and any subsequent application open. Generally, applications will only perform a single file system open (Guardian OPEN or FILEOPEN_) to a GAP window, but multiple simultaneous opens are permitted from the same application process or from different processes. Applications may also open a GAP window in exclusive mode preventing access by any other application for the duration of the open.

When the first open is received, GAP attempts to send a Port Connect request. If there is no contact with the remote server, the open request is suspended indefinitely until the server is contacted. Once contact is made with the remote server, Port Connect processing continues as follows:

When Add Window Port Any is specified (3883/4/5 only), then the remote server will connect to the first (lowest numbered) port with a matching port type which is current available. The connect is accepted if any such port is found. If Add Window Port <port-num> is specified, then only <port-num> is checked for matching port type and availability. 3886 only supports a specific port number.

Add Window Type ATAP matches 3883/4/5 Port Type ATAP.

Add Window Type 6530 matches 3883/4/5 Port Type 6530.

3886 always uses Port Awan ATAP.

A port is available if it is not already in use by a local user or a remote user, and it is configured for Port Access Remote or Dynamic.

If a second (or third, etc.) open request is received while the first open is in progress, the new request is queued until the first open is completed. The same completion status, successful or rejected, reported for the first open is also reported for additional opens.

If a second (or third, etc.) open request is received after the port is successfully connected, the new open is completed immediately with file error 0.

Upon port connection, the remote server port configuration remains as it last set by CLI/GUI (see note below). Modem signals DTR and RTS are unchanged at this time, usually being clear for Port Signal Control Enabled, and set for Port Signal Control Disabled. GAP will send any configured Script setmode requests immediately after Port Connect and before any application I/O.

If there are multiple concurrent application opens, then no action is taken on application close as long as at least one open remains. When the last remaining application open for a Window closes, the GAP sends Port Disconnect to the remote server after a one second delay. Port Disconnect can also be triggered by:

GAPCOM Stop Window / Abort Window

CLI Parser Logout Port command.

GUI Management Tool Port Reset command.

The server processes Port Disconnect as follows:

Clear DTR and RTS

Restore all permanent port configuration parameters.

If Port Signal Control Disabled, raise DTR and RTS after a short delay

AWAN 3883/4/5 Server Configuration

General Server Parameters

License option bits 64 and 63 are required. These should be present in all AWAN devices sold by NonStop. Use the AWAN console port bootblock "Display boot config flash" to verify these settings.

Port Type

Port Type ATAP or 6530 is REQUIRED, and must match the WIN type.

Port Access

Port Access Remote should be used to allow access to the port by GAP and to restrict access from the terminal keyboard. While Port Access Dynamic (the default setting) will allow access by GAP, any stray input characters from the async device will login the port in "local" mode, prohibiting access by GAP.

Port Speed *

Port Character Size *

Port Parity *

Port Flow Control

Port Signal Control

These may be set at the server via CLI parser or GUI Management Tool, via the GAPCOM Script feature, or via Setmode by the application. Changes made by the Script facility or by application setmode are only in effect for the duration of a Port Connection.

* For 3883/4/5, Port Speed, Char Size, and Parity should be configured via CLI of GUI to the proper settings to avoid framing errors. Framing errors can cause data corruption (even on adjacent AWAN ports) and 3883/4/5 reboots.

Port Flow Control

For Window Type 6530 with GAP, Port Flow None is required.

Port Modem

Should NOT be configured for ATAP ports.

If server port configuration is changed via CLI parser Change or Define or via GUI Management Tool, then the port should be logged out (via the CLI) or reset (via the GUI) twice to ensure that the new settings are put into effect before the next ATAP connect.

AWAN 3886 Server Configuration

General Server Parameters

3886-6530 flashram card must be installed. Use CLI command SHOW AWAN to verify that AWAN features are installed and enabled. GAP users frequently need to upgrade the flashram card to the latest software release (see the last chapter of this manual for release notes). Contact Gemini if you have any questions about upgrades.

Port Access

Port Access Remote should be used to allow access to the port by GAP and to restrict access from the terminal keyboard. While Port Access Dynamic (the default setting) will allow access by GAP, any stray input characters from the asynch device will login the port in "local" mode, prohibiting access by GAP. Remember that Access cannot be changed by SET or CHANGE commands; only DEFINE can be used. Furthermore, the Port AWAN attribute must be set to ANSI whenever the Port ACCESS attribute is altered; also, logout the port twice to ensure the Access is completely altered:

CHANGE PORT 3 AWAN ANSI

DEFINE PORT 3 ACCESS REMOTE

LOGOUT PORT 3

LOGOUT PORT 3

CHANGE PORT 2 AWAN ATAP

Port AWAN ATAP

Port AWAN ATAP is required. This is used for ADD WINDOW TYPE 6530 and for TYPE ATAP:

CHANGE PORT 3 AWAN ATAP

Port Speed

Port Character Size

Port Parity

Port Flow Control

Port Signal Control

These can be set either at the server via CLI command, by the GAPCOM Script feature, or by application Setmode.

Port Flow Control

For Window Type 6530 with GAP, Port Flow None is required.

Port Autobaud Disabled

If server port configuration is changed via CLI parser Change or Define, then the port should be logged out (via the CLI) twice to ensure that the new settings are put into effect before the next ATAP connect.

AWANCLI Utility Program

The AWANCLI program is an UNSUPPORTED utility provided as a courtesy for convenient access to the CLI from a NonStop terminal. There are several ways to run AWANCLI:

AWANCLI is a typical NSK TCP/IP application which defaults to TCP/IP process $ZTC0 and can be configured for another TCP/IP process by:

delete define =TCPIP^PROCESS^NAME

add define =TCPIP^PROCESS^NAME, FILE $ZB01C

RUN AWANCLI [/ OUT <list> /]

Prompts for commands.

RUN AWANCLI [/ OUT <list> / <awan>

Opens <awan>, then prompts for commands.

RUN AWANCLI [/ OUT <list> /] [<awan>] ; <cmd-list>

Open <awan> if specified; process <cmd-list>; then exit.

RUN AWANCLI / IN <in> [, OUT <list>] /

Process <in>, then exit.

<list>

An output listing file; the home terminal is used if <list> is omitted. If <list> refers to a disk file, then a 101 edit file is created. Maximum output columns to <list> is 80 plus <indent>.

<awan>

A dotted ip address or a name from AWANLIST

<in>

A 101 edit file with AWANCLI <cmd-line>’s.

<cmd-line>
<cmd-list> [“—“ <remainder of line ignored as a comment>]

<cmd-list>
<cmd> | <cmd> ; <cmd-list>

<cmd>

AWANLIST
displays AWANLIST entries

CLOSE

closes telnet session to current AWAN

DEBUG
for debugging AWANCLI

EXIT

terminate AWANCLI; ignored in <in> or <obey>

FC

 standard fix command

!

repeat last command

HELP

list AWANHELP file

INDENT <n>
indent output 0-9 columns; default 2

OBEY <obey>
process commands from edit file; can nest 9 deep

OPEN <awan>
telnet to specified AWANLIST name or IP addr

OTO <n>
1-9, default 1. Seconds to wait for AWAN response.

OUT <list>
future output to specified file or 101 edit disk file

REPEAT <cmd-list>
process <cmd-list> for all AWANLIST entries

TIME

displays (NonStop system) date and time

<cli-cmd>
Anything else is sent to AWAN as a CLI command

AWANLIST is a 101 edit file in the current subvol or the AWANCLI object file subvol. Blank lines and lines beginning with “—“ (dash dash) are comments.Entry lines have a dotted IP address, optionally preceded by an AWAN name (1-12 characters, starts with alpha, remainder alpha, numeric, or “_” (underscore), case doesn’t matter). Automatically read when needed.

Is <cli-cmd> is entered before any OPEN command, the first entry in AWANLIST is automatically opened.

AWANCLI sends <cli-cmd> to AWAN and then waits for a response. The response is considered complete when the AWAN has not transmitted for OTO seconds. Thus, the next AWANCLI prompt will appear slightly delayed. The prompt is the IP address when an AWAN is open, otherwise “AWANCLI”. The prompt appears in reverse video.

The REPEAT command is useful for gathering periodic statistics or configuration reports for all AWAN devices. If a given AWAN is not available, there will be a delay (over a minute) before proceeding to the next entry in AWANLIST.

For AWAN 3886

AWANCLI must include three lines after any OPEN:

a blank line to invoke the “#” prompt; since a blank line is ignored, use a line containing a single asterisk “*”

then a line containing the remote access password “access”

then a line containing any username “abc”.

Write Operations

If the terminal is in break mode, and the requesting application does not have break access, file error 110 is returned.

If pending_modem_err flag is set (setmode 242,1 and DSR dropped), return file error code 140, then clear pending_modem_err flag.

If the cd_lost flag is set, return file error 176 and clear cd_lost.

If the overrun flag is set, return file error 175 and clear overrun.

With Modem On (see Control 11 and Setmode 210), and modem signal CD is not set, and DCD override is not set, return file error code 140.

If “half-duplex” (setmode 231 p1>0), raise RTS and check CTS. If CTS is already high, continue. If CTS is low, wait for CTS to go high before continuing with write. If CTS does not go high within the number of seconds specified by setmode 231 p1, terminate the write with file error 140.

If Setmode 6 P1.<15>=1 (default), append CR LF.

If none of the above is true, start sending the data. If Modem On, and CD drops during the transfer, return file error 140. If Setmode 206 write timeout expires, return file error 174. If no errors occur, return file error 0. If break is received, the write completes with file error 111 (see setmode 243).

Once the write completes, drop RTS immediately (if setmode 231 p2=0) or after the timeout by setmode 231 p2. If another write occurs before this timeout expires, RTS is never dropped. Refer to setmode 231 for details.

Multiple simultaneous writes are permitted, being processed in the order received.

Writeread Operations

If the terminal is in break mode, and the requesting application does not have break access, file error 110 is returned.

With Setmode 202 P1=0 (default), the writeread buffer contains no header, just the normal data on input and output.

With Setmode 202 P1>0, the writeread buffer contains a prefix of P1 byte length which is ignored on output and undefined on input. If any data at all is returned, the prefix will also be returned. Certain errors, indicated by a non-zero file error code, do not return the prefix (zero read count on completion). In all cases, if the read count on completion is less than or equal to the prefix length, then no data is returned. If the read count on completion is greater than the prefix length, then <read count> minus <prefix length> bytes of data appear starting immediately after the prefix area.

The effective read and write counts are defined as the actual read and write counts used in the Writeread call minus the prefix size specified by Setmode 202 P1. If Setmode 202 P1=0, then the effective read and write counts are equal to the read and write counts used in the writeread call.

A writeread request with an effective write count of zero is queued behind any other write and writeread requests. After any preceding requests are processed, the writeread with the effective write count of zero does not send out any data and is then queued as a read operation.

A writeread request with an effective read count of zero does not read or return any data. If the effective write count and effective read count are both zero, the writeread is completed immediately.

The write portion of a writeread request is handled as described above for write operations, except that no CR LF is appended regardless of Setmode 6 setting. The read portion is handled as described below for read operations. Performing a writeread request while read requests are pending is of questionable value, since incoming data will be used to satisfy the pending read requests first. When “half-duplex” (setmode 231 p1>0), RTS is dropped, or the RTS timer is started, after the write portion and before the read portion.

Read Operations

If the terminal is in break mode, and the requesting application does not have break access, file error 110 is returned.

Read and write timeouts apply if Setmode 203-207 are set non-zero.

If pending_modem_err flag is set (setmode 242,1 and DSR dropped), return file error code 140, then clear pending_modem_err flag.

If the cd_lost flag is set, any data in the typeahead buffer is used to complete the Read. If the typeahead buffer contains more data than the maximum read count, the Read is completed with file error 0. If all of the data does fit, then file error 176 is returned, and cd_lost is cleared.

If the overrun flag is set, any data in the typeahead buffer is used to complete the Read. If the typeahead buffer contains more data than the maximum read count, the Read is completed with file error 0. If all of the data does fit, then file error 175 is returned, and overrun is cleared.

With Modem On (see Control 11 and Setmode 210), and modem signal CD is not set, and DCD override is not set, return file error code 140.

Otherwise, start receiving data. Read timeouts specified by Setmode 203, 204, and 205 apply.

If the Read buffer is filled (as defined by the maximum read count), the Read is completed with file error 0.

If break is received, the Read is completed with file error 111. (see setmode 243)

While receiving data, the interrupt characters are interpreted, unless Setmode 13 is in effect as described below. The defaults are carriage return for line-end, control-Y for line-eof, backspace for char erase, and control-X for line erase. These can be modified via Setmode 9, 217, and 223. If an interrupt character is set to zero, its function is disabled. Echo can be disabled by setmode 20; if not disabled, all input characters are echoed as described below.

Table 5-1. Read Action Matrix

Input Character
Action

ETX or ETB character (see Setmode 222) when Setmode 13,1 or 13,3
Character is placed into buffer and is echoed. Read continues.

First character after ETX/ETB when setmode 13,1 or 13,3
Character is placed into buffer and is echoed. For setmode 13,1, read completes with file error 0. For setmode 13,3, read continues.

Second character after ETX/ETB when setmode 13,3
Character is placed into buffer and is echoed. Read completes with file error 0.

Special line termination character when SETMODE 38 P1=0 and either (SETMODE 237,1 or SETMODE 237,0 and SETMODE 14,1 and SETMODE 38 P2 character is also specified as a SETMODE 9 interrupt character)
Character is not placed into the buffer.

Nothing is echoed.

Read completes with file error 0.

Special line termination character when SETMODE 38 P1=1 0 and either (SETMODE 237,1 or SETMODE 237,0 and SETMODE 14,1 and SETMODE 38 P2 character is also specified as a SETMODE 9 interrupt character)
Character is placed into the buffer.

Nothing is echoed.

Read completes with file error 0.

Line Term (default CR but may be modified by Setmode 223 or Setmode 217)
Character is not placed into the buffer.

CR and LF are echoed for read but not for writeread (see also SETMODE 7).

Read completes with file error 0.

Line end (Only if defined by Setmode 9 or setmode 217)
Character is added into the buffer.

Character is echoed

Read completes with file error 0.

Line eof
Character is not placed into the buffer.

“EOF!”, CR and LF are echoed.

Read completes with file error 1.

Line erase
Any data in the read buffer is erased.

“@”, CR and LF are echoed.

Read operation continues.

Character erase
Delete last character in buffer, if any.

Backspace, “ “ and backspace are echoed unless the buffer was empty.

Read operation continues.

Any other character data
Character is placed into the buffer.

Echo the character

If the buffer is full, complete read with file error 0.

If the buffer is not full, the read operation continues.

All processing of input characters, including echo, occurs during read (or writeread) processing, which, due to typeahead, can be some amount of time after they were first received. In the typical situation where the host displays a prompt and echoes the keyboard response, this results in a “natural” echo of the input data.

When Setmode 13,1 or Setmode 13,3 is in effect, the above rules for interrupt characters and echo still apply; however, Setmode 13,1/3 is usually accompanied by Setmode 20,0 to disable echo, Setmode 14,0 to disable interrupt character termination, and Setmode 9. When Setmode 13,1/3 is in effect, an ascii ETX/ETB (0x03/0x17, see Setmode 222) is always detected before checking for interrupt characters; once an ETX/ETB is detected, then the next character (for Setmode 13,1) or the next two characters (for Setmode 13,3) also bypass interrupt character processing. The read operation completes with file error 0 and with the data buffer including the ETX/ETB and the single character (Setmode 13,1) or the two characters (Setmode 13,3) following the ETX/ETB. The default ETX character is ETX (0x03) and the default ETB character is disabled. Both may be changed with setmode 222.

On parity or framing error, file error 120 is returned if setmode 10 p1<>0.

If a read timeout occurs, the Read completes with file error 171, 172, or 173.

If CD drops during the read, the settings of Modem On and Setmode 211 determine the result:

Setmode 211 P1<>0 (Modem On or Off)

The read is completed with file error 176.

Setmode 211 P1=0 and Modem Off

The CD drop is ignored.

Setmode 211 P1=0 and Modem On

The read completes with file error 140.

Multiple simultaneous reads are permitted, being processed in the order received. Since ATAP has a configurable type-ahead buffer, no data will be lost even with a single read at a time as long as the applications performs another read before the type-ahead buffer fills. Posting more than 2 reads will result in little performance improvement and might even result in slight performance degradation.

Interrupt Character Handling

The AWAN server maintains a table of 256 action codes, one for each possible input byte. These action codes control input character processing, for read operations and the read portion of writeread operations. The following table lists action codes and their handling. For all cases, no echo is made if setmode 20,0 is in effect.

Table 5-2. Interrupt Character Action Codes

Action Code
Interrupt Action Description

0
Normal data. The input byte is echoed and is added to the read response. If the response buffer is filled, the read is completed with fecode 0

1
Backspace. If the response buffer is empty, no action is taken and the input byte is essentially ignored. Otherwise backspace, space, backspace (08 20 08) is echoed, regardless of which character this action is defined for, and the last byte in the read response is deleted

2
Line erase. "@" cr lf (40 0d 0a) is echoed, and any data in the read response buffer is cleared.

3
Eof. "EOF!" cr lf (45 4f 46 0d 0a) is echoed, any data already in the response buffer is discarded, and the read is completed with fecode 1.

4
Enter. For writeread, no echo is done; for read, if setmode 7,1 then cr lf (0d 0a) is echoed, else only cr (0d) is echoed. Note that, if anything is echoed, cr (0d) is used, not the input byte itself. The read is completed with fecode 0 along with any data in the response buffer. The enter character itself is not included in the response.

5
Termination. The input byte is echoed and is added to the read response, and the read is completed with fecode 0 along with any data in the response buffer. The termination character is included in the response.

Cancel Operations

Guardian cancel is not recommended for termination of read, write, or writeread; use Setmode 213 instead. For these cases, cancel is handled as follows:

· If a read, write, or writeread has not been yet sent from GAP to the server, it is discarded.

· If a read, write, or writeread has been received by the server but is queued behind other operations, it is discarded.

· If the server has started processing for a write or the write portion of a writeread, the output will complete.

· If the server has started processing for a read or the read portion of a writeread, any data received is discarded and the operation is terminated.

Guardian cancel may be used to stop Control 11 operations.

Control and Setmode Operations

Control and Setmode operations are processed and completed as soon as they are received by the AWAN server. The only exception is Control 11 when waiting for CD. If write, read, or writeread operations are in progress, the Control or Setmode can interfere with them. In general, requests which alter configuration parameters, such as Setmode 202 (change prefix size) or Setmode 22 (baud rate), should only be performed when no other requests are in progress.

Any Setmode calls for Setmodes not specifically discussed below will be replied to with a file error 2 - unsupported operation.

Deviceinfo Operations

GAP responds to Deviceinfo calls as shown in Table 5-2 below.

Table 5-3. Deviceinfo Default Responses

Deviceinfo Filename Parameter
Device Type
Device Subtype
Record Length

$GAP
53
0
0

$GAP.#WIN01 for TYPE ATAP
6
0
80

$GAP.#WIN01 for TYPE 6530
6
4
80

The default values returned for a window may be overridden by specifying the DEVTYPE and/or the RECLEN parameters on the ADD WINDOW command.

Control 1 - Forms Control

Control 1 behaves identically as ATP6100 does for a type (5 , 32) printer:

Parameter = 0

form feed (send 0c)

Parameter = 1 - 15
single space (send 0d0a)

Parameter = 16 - 79
skip (parameter - 16) lines

Control 11 - Wait for Carrier Detect

Action depends on the setting of Setmode 216 and the Server Port Signal Control attribute, which may be modified via Setmode 210.

Control 11 always raises DTR immediately and raises RTS according to the setmode 216 setting described below. Control 11 always clears the internal cd_lost and overrun flags

Control 11 does not normally return file error 140; but if file error 140 does occurs, it should be retried.

In the following discussion, modem signals are defined for the various AWAN models as follows:

3883 , 3884, 3885

RTS
RJ45-1

DSR
RJ45-3

DTR
RJ45-7

CTS
RJ45-8

3884 and 3885 only

RI
RJ45-2

3886-08

RTS
DB25-4

CTS
DB25-5

DSR
DB25-6

DCD
DB25-8

DTR
DB25-20

RI
DB25-22

3886-16 and 3886-32

CTS
RJ45-4

RTS
RJ45-5

DTR
RJ45-7

DSR
RJ45-8

Setmode 216,0

RTS is raised immediately along with DTR.

If Port Signal Control Disabled (Setmode 210,0), Control 11 always completes immediately.

If Port Signal Control Enabled (Setmode 210,1), Control 11 waits for DSR to raise. If DSR is already high, the Control 11 completes immediately.

This setting is the default at session startup, and is generally compatible with ATP6100 operation.

Setmode 216,1

RTS is raised immediately along with DTR.

Regardless of Port Signal Control (setmode 210) setting, Control 11 always waits for DSR to raise. If DSR is already raised, the Control 11 completes immediately.

This setting is compatible with older releases (gem027f and earlier) of ATAP firmware.

Setmode 216,2

RTS is raised immediately along with DTR.

Regardless of Port Signal Control (setmode 210) setting, Control 11 always waits for RI to raise. If RI is already raised, the Control 11 completes immediately.

Should be used only for 3884 and 3885 models.

Setmode 216,3

3886-08 only.

RTS is raised immediately along with DTR.

Regardless of Port Signal Control (setmode 210) setting, Control 11 always waits for DCD to raise. If DCD is already raised, the Control 11 completes immediately.

Setmode 216,4

3886 models only. This operation is similar to ATP6100 with AUTODCONN OFF.

If Port Signal Control Disabled (Setmode 210,0), Control 11 raises RTS and always completes immediately.

If Port Signal Control Enabled (Setmode 210,1), Control 11 raises DTR only and then checks for DSR:

If DSR is already high, operation continues immediately.

If DSR is low, wait until DSR goes high (no time limit).

For “half-duplex” (setmode 231 p1>0), the control completes immediately if DSR is already high or as soon as DSR goes high. RTS is not raised. CTS is not checked.

For “full-duplex” (setmode 231 p1=0), when DSR is high, raise RTS and check for CTS.

If CTS is already high, operation continues immediately.

If CTS is low, wait until CTS goes high, up to 30 seconds. If CTS is still low after 30 seconds, drop DTR and RTS and complete control 11 with file error 140.

When CTS is high, complete the control 11.

Setmode 216,5

3886-08 only. This operation is similar to ATP6100 with AUTODCONN ON.

If Port Signal Control Disabled (Setmode 210,0), Control 11 raises RTS and always completes immediately.

If Port Signal Control Enabled (Setmode 210,1), Control 11 raises DTR only and then checks for DSR:

For “half-duplex” (setmode 231 p1>0), the control completes immediately if DSR is already high or as soon as DSR goes high. RTS is not raised. CTS and DCD are not checked.

For “full-duplex” (setmode 231 p1=0):

If both DSR and DCD are already high, operation continues immediately.

If either DSR or DCD is low, wait until both DSR and DCD are high (no time limit).

When both DSR and DCD are high, raise RTS and check for CTS.

If CTS is already high, operation continues immediately.

If CTS is low, wait until CTS goes high, up to 30 seconds. If CTS is still low after 30 seconds, drop DTR and RTS and complete control 11 with file error 140.

When CTS is high, complete the control 11.

Control 12 - Drop Data Terminal Ready

Action depends on the settings of setmodes 216 and 225.

If the connection from GAP to the Server is down due to TCP/IP network failure, the Control 12 request will be completed immediately with normal status (file error 0). When the GAP is connected to the server, then the following rules apply:

Control 12 always immediately drops DTR and RTS modem signals.

The control 12 operation completes as follows:

If setmode 216 p1=4/5, DSR is checked

If DSR is already low, continue immediately.

If DSR is high, wait for DSR to drop, then continue.

If DSR is still high after 3.5 seconds continue without waiting for DSR to drop.

Regardless of setmode 216 setting, if setmode 225 p1>0, then the control 12 will only complete after the time interval specified by setmode 225. Setmode 225 can be used to ensure that DTR remains low for a specified time interval to accommodate requirements of different modems..

Control 12 always clears the cd_lost and overrun flags.

Control 12 always completes with file error code 0 (normal).

Control 40 - flush type-ahead buffer.

Any data in the typeahead buffer is discarded. If the cd_lost flag is set, file error 176 is returned; if the cd_lost flag is clear but the overrun flag was set, file error 175 is returned; if both flags are clear, file error 0 is returned.

Control 40 always clears both the cd_lost and overrun flags.

Setmode 200 - Set/read modem signals

If P1 and P2 present, modem signals are changed as follows: P1 and P2 are bit masks. When a P1 bit is set, the modem signal is set or cleared according to the corresponding P2 bit. Only DTR and RTS can be changed. See Control 11 for details on the mappings of signal names to the RJ45 and DB25 jacks on various AWAN models. This manual refers to the pins at the AWAN, which may be connected to different pins at the terminal or modem. Refer to the NonStop manuals for diagrams for different RJ45-DB25 adapter hoods.

%h80
DTR
output

%h40
RTS
output

%h20
DSR
input

%h10
CD
input only on 3886-08

%h08
CTS
input

%h04
RI
input only on 3884, 3885, 3886-08

%h02
unused

%h01
unused

If Last Params is present, P1 returns the current values.

For example, to clear DTR issue the following:

CALL setmode (fnum, 200, %h80, 0) ;

Setmode 201 - Send Break

P1 specifies break duration in 0.01 second ticks; “short” break sent if omitted.

For 3886, the break duration is fixed and P1 is ignored.

Setmode 202 - Enable Writeread spacer prefix

If P1=0 (default), Writeread follows standard ATP6100 rules where the data buffer contains only the data being sent or received.

When P1<>0, P1 specifies the size, maximum 255, of the prefix at the beginning of the Writeread buffer. These bytes are ignored on output, and are undefined on input. Write and Read counts of subsequent Writereads must be at least equal to this prefix size, or file error 21 is returned.

Setmode 203 - First byte timeout

P1 specifies the timeout value in 0.01 second ticks waiting for the first byte in response to a Read or Writeread. P1=0 disables this timeout (other timeouts may apply). If this timeout expires, file error 171 is returned.

Setmode 204 - Inter-byte timeout

P1 specifies the timeout value in 0.01 second ticks between bytes received in response to a Read or Writeread. P1=0 disables this timeout (other timeouts may apply). If this timeout expires, file error 172 is returned, along with any bytes previously received.

Setmode 205 - Total read timeout

P1 specifies the timeout value in 0.01 second ticks waiting for a normal completion (interrupt character or maximum read byte length fulfilled) to a Read or Writeread. P1=0 disables this timeout (other timeouts may apply). If this timeout expires, file error 173 is returned, along with any bytes previously received. This timer starts when the read is started.

Setmode 206 - Write timeout

P1 specifies the timeout value in 0.01 second ticks waiting for output completion of a Write or Writeread. P1=0 disables this timeout (other timeouts may apply). If this timeout expires, file error 174 is returned. The number of bytes sent is undefined. This timeout generally applies when flow control is enabled.

Setmode 207 - Verify ATAP

Assists applications in determining type of access method controlling a file. P1 and P2 are ignored. Last params are returned with ascii “ATAP” (P1= %h4154, P2= %h4150). Generally, other access methods (like ATP6100) will return file error 2.

Setmode 208 - Flow control

P1=0 (default) no flow control.

P1=1 Xon/Xoff flow control.

P1=2 Hardware flow control (CTS).

P1=3 Hardware flow control (DSR).

When last params are requested, P1=255 indicates an undefined flow control method is configured.

Setmode 209 - Define type-ahead buffer size

P1 specifies the type-ahead limit in bytes, from 0 to 65535. The default at session at startup is 8000. Values lower that 500 can cause undesired results. It is possible that the limit may be exceeded by a few dozen bytes depending on the actual data arrival rate. When the limit is reached, the overrun flag is set. Any data received when the overrun flag is set is discarded.

If flow control is enabled, flow control is asserted when the number of bytes queued exceeds P1 divided by two (approximately), and flow control is released when the number of bytes queued falls below P1 divided by 4.

P2=1 (default) enables type-ahead. P2=0 disables type-ahead, which discards any queued input immediately before processing a READ operation, and also immediately after READ completions. This setting is useful for compatibility with standard ATP6100 operation, which only accepted input when an application READ was active.

Setmode 210 - Set Modem Attribute

Setmode 210 modifies the Server Port Signal Control attribute, which permanently changed by the CLI (Command Line Interface at a Terminal Server Local prompt) command Define Port Signal Control Enabled (or Disabled), which does not take effect until the Port is logged out. See also Setmode 214.

P1=0 Changes the Port Signal Control attribute to Disabled (“hard-wired”) for the remainder of the session. DTR and RTS are set.

P1<>0 Changes the Port Signal Control attribute to Enabled (“modem”) for the remainder of the session. DTR and RTS are cleared. It is recommended that Control 11 follow.

Setmode 211 - Carrier Detect (CD) Loss Notification

P1=0 Default. Disables notification of future CD loss events.

P1<>0 Enables notification of future CD loss events.

When a Carrier Detect loss of sufficient duration (see Setmode 212) is detected, the cd_lost flag is set and the overrun flag is cleared. See Write for further details.

For 3886, a loss of Carrier Detect immediately takes effect; there is no “debounce” logic that requires that DCD stay down for a period of time and thereby ignores transient losses of DCD. See also: setmode 235.

Setmode 212 - Set Carrier Detect Timeout Interval

P1 Default 200 (2.0 seconds). Specifies the CD drop interval in 0.01 seconds tics. CD must drop, and remain off, for this period before the drop is acted upon. Any loss of CD for less than this interval is disregarded, avoiding sensitivity to momentary interruptions of the CD signal. P1 may range from 0 (act on any CD loss) to 500 (wait 5 seconds before acting on CD loss).

For 3886, this setmode has no effect but will appear to function normally.

Setmode 213 - Stop Pending IO Operation(s)

P1 applies to pending reads and to pending writereads which have completed their write portion.

P1 = 0 or omitted - no effect.

P1 = 1 One read operation will be terminated immediately with file error code 177. Any data already received and processed will be returned. No data will be discarded; type-ahead buffers are not affected.

P1 = 2 Any and all pending reads are terminated immediately with file error code 177.

P2 applies to pending writes and to pending writereads which have not completed their write portion.

P2 = 0 or omitted - no effect.

P2 = 1 One write operation will be terminated immediately with file error code 177 regardless of how many bytes of data may have been transmitted. It is possible that the entire message will still be transmitted.

P2 = 2 Any and all pending write operations will be terminated immediately with file error code 177.

Undefined values for P1 or P2 result in the setmode request being entirely rejected with file error code 2.

Any read and write requests terminated by the setmode will be completed first; then the setmode request will be completed with file error code 0. LP1 and LP2 are returned as zero.

Setmode 214 - DCD (Data Carrier Detect Override)

Overrides requirement for DCD signal to be present from the modem when Modem On (see Setmode 210).

When P1=1, reads and writes are permitted regardless of status of DCD signal from modem and regardless of Modem Attribute.

When P1=0 (default) and Modem Attribute is On, DCD must be present at the beginning of read and write requests and while the operation is in progress. If DCD is not present initially, or drops during the operation, file error code 140 is returned.

Not supported on 3886.

Setmode 215 - ARC Compatibility Mode

Supports 99% compatibility for existing applications programmed to work with Async Read Continuous, or ARC, software from CISCORP, Inc. ARC compatibility mode is only needed for applications which used device type 6,0, which uses a special 10 byte header for writeread operations. ARC applications which used device type 6,1, or which did NOT use writeread, do not require (and generally will not operate with) Setmode 215.

P1=0 (default), ARC compatibility is disabled; normal ATAP specifications described in this chapter apply.

P1<>0, ARC compatibility is enabled, which modifies the ATAP API as described later in this manual. The writeread spacer prefix (see Setmode 202) is also set to 10 bytes.

Setmode 215 is not affected by Setmode 28 (Reset).

In order to avoid adding the Setmode 215 to the ARC application, the GAP script feature may be used to issue it at session startup. For example:

gapcom $gap ; &

 ADD SCRIPT arc 215,1 ; &

 ADD WIN #win1, PORT 1, TYPE ATAP, SCRIPT arc ; &

 EXIT

Since ARC ran inside the 6100/3605 family of NonStop controllers, GAP cannot reproduce the exact features, performance, and timing of ARC. Gemini recommends that new applications use the standard ATAP API specified in this chapter, and that Setmode 215 only be used when conversion to standard ATAP API is impractical.

When Setmode 215 is used to support legacy "ARC" applications, it is important that the application be thoroughly tested by the customer for proper function and performance.

Refer to "ATP6100 ARC Release 17, Version S User Guide" dated 04/11/95 from CISCORP, Inc., Section 3.6 "Programming Through Writeread". Important differences are identified in this section.

Pin Status Query (Command code hex 02)

Byte 3 always has the same value as byte 4 due to hardware limitations.

Byte 4 contains DSR (data set ready) signal.

Byte 5 contains CTS (clear to send) signal.

See Setmode 200 for information on these signals.

Report DCD Drop

The AWAN signal actually monitored is DSR; depending on the connector hood used this may or may not be connected to DCD at the modem or other attached device. See Setmode 200 for information on these signals.

Not supported on 3886.

Send Timed Break (Command code hex 04 - qualifier hex 02)

The time duration of the break is fixed.

Disconnect (Command code hex 04 - qualifier hex 0c)

Both DTR and RTS signals are dropped. See Setmode 200 for information on these signals.

DEVICEINFO2

Applications using the "options" parameter may get different results, since GAP is a Subtype 30 process.

OPEN

GAP will not respond to application OPEN or FILEOPEN_ until connection is established with the remote AWAN server. If the application performs waited opens (i.e., does NOT use OPEN "flags" parameter bit octal %200 or FILEOPEN_ "options" parameter bit <1>), then the application will be suspended until GAP establishes connectivity with the remote AWAN server.

Overall Timing

ATP6100 connected to ARC via a channel, but GAP connects to the remote AWAN server via a TCP/IP driver process, a LAN controller, and a LAN or LANs, possibly including routers and congested or slow networks. The timing and performance of specific operations will vary.

Additionally the timing will vary between AWAN models.

Timers

The AWAN server uses a different hardware clock, so read and write timeouts, especially smaller values, will vary, sometimes significantly.

Parity

Inbound parity detection and outbound parity generation cannot be separately controlled on AWAN servers.

Completion Order

Concurrent Guardian file system I/O operations (Setmode, Write, Read, Writeread) may complete in different order.

Baud Rates

Speeds 1800, 2000, 3600, or 200 are not supported by the AWAN server; but higher speeds 38,400, 57,600, and 115,200 are supported.

File System Error Codes

GAP may not return identical file system error codes, especially during cpu failures.

Write abort

If a write operation is terminated due to a write timeout expiration or a cancellation, then the remainder of the message may or may not be transmitted. In particular, this may delay subsequent transmissions until the first transmission is complete. Furthermore, the number of bytes actually transmitted is unknown, and will always be reported as zero when a write timeout occurs.

Configuration

Instead of CMI, GAP is configured at the AWAN by the Command Line Interface or the Windows Management Tool, via GAPCOM using SCRIPT commands, and from the application using Setmode requests.

Cancel

File system CANCEL will operate differently, and its use is not recommended.

Line Errors

Exception conditions, including break, parity errors, framing errors, modem signal changes, and timeout, will be detected with different timing.

Setmode 216 - Control 11 Signal Usage

P1 specifies the modem signal to be monitored by Control 11. P1=0 is the default at session startup. Setmode 216 is not affected by setmode 28. Refer to the Control 11 section above for details.

Setmode 217 - Extended Interrupt Character Handling

Setmode 217 allows for total control of all 256 input byte values, as opposed to setmode 9 which only handles 4 different values.

P1 omitted

No action.

P1 = 256

P2, if specified, is ignored. The default interrupt characters are set:

bs (08)
action code 1 (backspace)

cr (0d)
action code 4 (enter) . NOTE: The character defined by Setmode 223, which defaults to CR (0d), is set to action code 4.

^x (18)
action code 2 (line erase)

^y (19)
action code 3 (eof)

0 <= P1 <= 255, P2 specified

P1 represents the interrupt character, and P2 is the action code for that character. See "Interrupt Character Handling" for definitions of action codes. If an undefined action code is specified in P2, the request is aborted with file error code 2.

0 <= P1 <= 255, P2 omitted

P1 represents the interrupt character. Last params will return LP1 as the action code presently defined for the specified character, and 0 for LP2. Except for this case, last params are not meaningful for setmode 217.

P1 > 256 or P1 < 0

File error code 2 is returned.

Example 1:

CALL setmode (fnum , 9 , %h080d , %h1819) ;

... is equivalent to ...

CALL setmode (fnum , 217 , 256) ;

... and is also equivalent to ...

FOR bx := 0 TO 255

DO CALL setmode (fnum , 217 , bx , 0) ;

CALL setmode (fnum , 217 , %h08 , 1) ;

CALL setmode (fnum , 217 , %h18 , 2) ;

CALL setmode (fnum , 217 , %h19 , 3) ;

CALL setmode (fnum , 217 , %h0d , 4) ;

Example 2:

CALL setmode (fnum , 9 , %h0a0a , %h0a0a) ;

... is equivalent to ...

CALL setmode (fnum , 217 , 256) ;

CALL setmode (fnum , 217 , %h08 , 0) ;

CALL setmode (fnum , 217 , %h18 , 0) ;

CALL setmode (fnum , 217 , %h19 , 0) ;

CALL setmode (fnum , 217 , %h0d , 0) ;

CALL setmode (fnum , 217 , %h0a , 5) ;

... and is also equivalent to ...

FOR bx := 0 TO 255

DO CALL setmode (fnum , 217 , bx , 0) ;

CALL setmode (fnum , 217 , %h0a , 5) ;

Setmode 218 - Carriage Control Handling

Setmode 218 allows for carriage control to be compatible with either terminal or printer device drivers.

P1 = 0 (default), for terminal (CSSASYNC) compatibility. Will append CR LF (0d0a) on write operations after a Setmode 27, 0 and a Setmode 6, 1 have been issued; otherwise nothing is appended.

P1 = nonzero, for printer (CSSPRINT) compatibility. Will append CR (0d) on write operations after a Setmode 27, 0 and Setmode 6, 0. For all combinations of Setmode 27 and Setmode 6, either CR (0d) or CR LF (0d0a) will be appended to write data. This will insure that subsequent write operations will begin in column 1.

Setmode 219 - Parity Mode

AWAN does not allow different parity settings for inbound and outbound data. For example, if even parity is generated for outbound data, then even parity is checked for inbound data. In traditional ATP6100 controllers, setmode 10 controls inbound parity checking and setmode 24 independently controls outbound parity generation. Setmode 219 allows independent control of setmode 10 and setmode 24 processing by using P1 to control setmode 10 and P2 to control setmode 24:

Setmode 219 P1=0. Setmode 10,0 accepted and changes both inbound and outbound parity to NONE. Setmode 10,1 is ignored.

Setmode 219 P1=1. Setmode 10 ignored, completed with fecode 0.

Setmode 219 P1=2. Setmode 10 rejected with fecode 2.

Setmode 219 P2=0. Setmode 24 accepted and changes both inbound and outbound parity settings.

Setmode 219 P2=1. Setmode 24 ignored, completed with fecode 0.

Setmode 219 P2=2. Setmode 24 rejected with fecode 2.

Setmode 219 P1=3 When port parity is set to odd or even, and a parity error is detected on an incoming character, the character will be ignored (discarded), and the read terminated with any characters previously received, with file error code 0 (when setmode 10,0 (default) is in effect) or file error code 120 (when setmode 10,1 is in effect).

Setmode 219 P1 and P2 may be specified together, or individually. P1 and P2 values not defined above will be rejected with fecode 2. The default for Setmode 219 is P1=0 and P2=0, meaning that both Setmode 10 and Setmode 24 will change both inbound and outbound parity.

Not supported on 3886.

Setmode 220 - Handling of unsupported setmode operations

ATAP does not support all of the setmode operations previously supported by ATP6100 (see the following section for details on ATP6100 setmode operations which are supported). In many cases, these unsupported setmodes are not required for proper operation, and can be safely ignored. In firmware versions gem028.16 and earlier, file error code 2 (invalid operation) was returned for setmode operations not supported by ATAP. This was intended to focus attention on these setmode operations for review and recoding, but in some cases application changes were inconvenient or impractical. Setmode 220 controls when file error code 2 will be returned in response to various setmode requests:

Setmode 220 P1=0.
Compatible with firmware gem028.16 and earlier. File error code 2 will be returned for any setmode function not supported by ATAP, and for any supported setmode that includes invalid parameters (for example, an undefined baud rate).

Setmode 220 P1=2.
Default at session startup. File error code 2 will only be returned for a supported setmode function that includes an invalid parameter. Setmode requests not supported by ATAP will be ignored with file error code 0 (normal completion).

Setmode 220 P1=2.
File error code 2 is never returned by ATAP for setmode requests, even if the setmode function in unsupported or even if a supported setmode includes invalid parameters.

Setmode 221 - UART Read Buffer Size

Incoming port data is automatically stored into UART read buffers, and hardware read completions occur when (a) the UART read buffer fills, (b) a inter-byte timeout (approximately 15 msec) occurs, or (c) an error (e.g. framing, break) occurs. Until such a hardware read completion occurs, AWAN performs no processing of input data. Especially with lower bit speeds and with large input blocks (or an endless stream of input data), the UART read buffer may not fill for a long time, as much as 150 seconds at 110 bps. Prior to gem028.19, the UART read buffer was 1536 bytes regardless of line speed. With gem028.19, the UART read buffer is set to the line bit speed divided by 16, subject to a minimum of 5 bytes and a maximum of 1536 bytes. This works out to approximately 6.25 seconds of continuous input data. For example, at 9600 bps the buffer size is 600 bytes; at 300 bps, 19 bytes. This has no effect on applications other than to conform to timeouts and otherwise complete read operations in a more precise manner. Application read buffers, interrupt characters, and timeouts still function as described in this manual, but with more accurate timing, especially at slower bit speeds. Setmode 221 allows applications more control over the UART read buffer size, and is not normally required.

Setmode 221 P1 specifies the UART read buffer size in bytes in the range 5 to 1536, or zero to use the default setting. Values out of range return file error code 2. The default setting is the line bit speed divided by 16, with a minimum of 5 and a maximum of 1536.

LP1 is returned as the previous setmode 221 P1 value. LP2 returns the UART read buffer size which would be used as a default, which is calculated by the dividing the current line speed by 16.

See also Setmode 224.

Not supported on 3886.

Setmode 222 - ETX and ETB Characters

Setmode 222 allows redefinition of the “ETX” and “ETB”characters used by Setmode 13. The default value is the actual ascii ETX character (hex 03) and no ETB character. Any value hex 00 to hex ff is allowed. P1 defines the ETX character and P2 defines the ETB character. If P2 is not specified, no ETB character is defined. If P2=P1, then only one “ETX” character is defined. When ETX and ETB characters are both used, they are treated in the same manner. For example, the following two setmodes are equivalent:

CALL SETMODE (fnum , 222 , %h03 , %h17) ;

CALL SETMODE (fnum , 222 , %h17 , %h03) ;

The “ETB” feature (setmode 222 p2) supports the old SYSGEN ETB parameter, but is more flexible in that any character may be used as “ETB”, not just hex 17.

Last params lp1 and lp2 will be returned as lp1=”ETX” character and lp2=”ETB” character. If “ETB” is not defined, then lp1 wil be the same as lp2.

Setmode 223 - Line Termination Character

Setmode 223 allows redefinition of the line termination character used to terminate normal read operations. The default is CR (hex 0d), but any value hex 00 to hex ff is allowed.

Setmode 224 - UART Read Timeout

The UART (async hardware) completes a hardware read operation when (a) the hardware buffer is full, or (b) when at least one byte has been received and a timeout occurs. No hardware read completes when any “interrupt” character is received. This is different from hardware supported by ATP6100 which would generate an interrupt to complete a hardware read operation when certain characters were received. Normally, ATAP handles this difference by interpreting async input one byte at a time and carefully completing application read requests according to the ATP6100 rules for interrupts characters, etc. The default UART read timeout depends on the baud rate and is structured for RAS PPP oerformance. ATAP applications can adjust the timeout to lower values for improved responsiveness to interrupt characters.

Setmode 224 P1=0 (default) restores the default UART read timeout for the current port speed. The default timeout, in units as described below, is 200 for spee 75, 100 for speed 110, 50 for speeds 134 to 4800, 32 for speed 9600, 5 for speed 19200 (optimized for terminal echo at the most common speed), and 15 for speeds 14400 to 115200.

Setmode 224 P1>0 sets the UART read timeout to a value from 1 to 255 in units of roughly 1.15 milliseconds for 3883 models and roughly 0.87 milliseconds for 3884 and 3885 models.

Setmode 224 returns as last param 1 the previous setting for Setmode 224, and as last param 2 the default setting for the current port speed.

Setmode 221 and 224 should not affect application read completions except with regard to timing. Very low values can negatively impact AWAN performance.

 Not supported on 3886.

Setmode 225 - Control 12 Delay

See description for Control 12. An application which performs Control 12 (to drop DTR and RTS) immediately followed by Control 11 (to raise DTR and RTS) can leave the DTR signal down for a very short time. Some modems and other devices require that the DTR signal remain down for a certain minimum period of time.

Setmode 225 P1=0 (default) does not delay Control 12 completions.

Setmode 225 P1>0 delays future Control 12 completions for the specified time in units of 0.1 seconds. A maximum delay of 50 (5.0 seconds) is allowed.

Setmode 225 returns as last param 1 the previous setting for Setmode 225.

Setmode 226,227 - Internal Use Only

Setmodes 226 and 227 affect flow control start and stop. It should not be used by applications.

Setmode 228 - Verify 3886

Setmode 228 assists applications in distinguishing AWAN 3886 models from 3883/4/5 models. Setmode 228 is unsupported on AWAN 3883/4/5. On 3886, P1 and P2 are ignored, and last params are returned with ascii "ATDS" (P1=%h4154, P2=%h4453). See Setmode 207.

Setmode 229 / 230 – Do not use

Setmode 229 and 230 are for Gemini development use only.

Setmode 231 – Half-Duplex

Setmode 231 provides half-duplex support on 3886 models only.

P1=0 (default) Full duplex operation, compatible with 3886 software versions 211 and earlier. P2 is not used when P1=0.

P1>0 enables “half-duplex”. The following settings are required:

Setmode 210,1 or Port Signal Control Enabled

Setmode 216,4/5

Setmode 208,0 or Port Flow Control Disabled

See Control 11 and Write for details of Half-Duplex operation. P1 defines the timeout, in seconds, waiting for CTS to go high after raising RTS. P1 must be in the range 1 to 30 (1.0 to 30.0 seconds), but a minimum value of 2 (2.0 seconds) is recommended when P1 is not zero.

P2 is only used when P1>0. If P2 is omitted or P2=0, then RTS is dropped immediately after completion of a write. If P2>0, then RTS is kept high for a period of time. For releases gem217 and earlier, P2 specified units of full (1.0) seconds. This was too large a unit a time for proper half-duplex operation, so P2 was redefined as ticks of one-hundredths of a second (0.01 seconds) in release gem218.

If P2>0, and another write operation occurs before the timeout expires, RTS does not drop. For gem217 and earlier, P2 must be in the range 1 to 255 (1.0 to 255.0 seconds). For gem218 and later, P2 must be in the range 1 to 25500 (0.01 seconds to 255.0 seconds).

In general, AWAN 3886 will indicate internal completion of a transmit (WRITE) operation while there are several bytes remaining in the UART buffer. If RTS is dropped too soon, this can truncate the write operation, losing the last few bytes, especially at lower baud rates. This is an important use of setmode 231 P2>0. Some experimentation is required to find the proper value; try longer values (for example, 100 for 1.0 seconds) until reliable operation is achieved, then reduce value to improve throughput untl errors are detected.

Some modems can require RTS to be maintained high for a longer time, as much as several seconds.

Half-Duplex does not affect read operations.

Only supported on 3886 models.

Setmode 232 – Type-Ahead Buffer Flush

Setmode 232 controls when the type-ahead buffer is flushed for WRITEREAD operations when type-ahead is disabled by setmode 209,x,0. This has no effect when type-ahead is enabled (setmode 209,x,1) or for READ operations.

P1=1 (default) Compatible with gem044 and previous releases. The type-ahead buffer is cleared just before the read phase of the WRITEREAD starts.

P1=0. This setting should only be used when recommended by Gemini support staff. The type-ahead buffer is cleared at the approximate time that the write phase of the WRITEREAD completes. The timing is approximate since GAP writes are completed when the last burst of data is DMA’d from AWAN RAM into the asynch chip (UART), which can be several milliseconds later (or longer for slower baud rates of if a flow control stop occurs). This setting has provne helpful in a case where the first few bytes of input, which was a response to the data sent out during the write phase of the WRITEREAD, could occasionally be discarded.

Only supported on 3883/4/5 models.

Setmode 233 – Flush transmit buffer on cancel

Setmode 233 controls flush of transmit (output) buffers when a Guardian CANCEL is received. Note that an AWAITIO[X} call with a specific filenum and a timeout (not zero or –1D) that completes with fecode 40 is the same as a CANCEL.

This setmode should only be used on the advice of Gemini support personnel.

P1=0 (default). Compatible with gem045 and previous releases. Transmit buffers, if any, are allowed to remain queued. This is normally a problem only when output is blocked by flow-control (for example, XOFF from device) or very slow baud rates.

P1=1 (any non-zero value). A cancel will flush any buffers queued for transmission. This will not affect a buffer whose transmission is already in progress, but any buffers that have not yet started transmission will be discarded.

Only supported on 3883/4/5 models.

Setmode 234 – Flush half-duplex type-ahead buffer on control 11 / write

Setmode 234 controls flush of the input type-ahead buffer for half-duplex (setmode 231 P1>0) ports at certain points. This is useful to discard garbage bytes often transmitted by modems at the beginning and end of phone calls (carrier detect and carrier drop) and during half-duplex transitions between read and write. P1 and P2 independently control buffer flushing for control 11 and write, respectively.

P1=0 (default). Compatible with gem223 and previous releases.

P1=1 (any non-zero value). Flush type-ahead buffer on control 11, both when control 11 is initiated and when it is completed due to DSR/DCD detection.

P2=0 (default). Compatible with gem223 and previous releases.

P2=1 (any non-zero value). Flush type-ahead buffer on half-duplex write, both at the beginning of the write when RTS is raised and when CTS is detected.

Any data flushed by this setmode will be traced.

Only supported on 3886 models.

Setmode 235 – Simulate DCD on 3886 models without DCD connection

3886 models with RJ45 jacks (i.e. 3886-16 and 3886-32) do not have a RJ45 pin for DCD. The 3886-08 model has a DB25 connector and does connect DCD (pin 8).

3883/4/5 models simulate DCD by setting DCD to the same value as the DSR signal: when DSR goes up or down, the DCD setting is simulated to have the same value. See discussion under control 11 and setmode 216 for more information on 3883/4/5 modem signals and pinouts.

To allow 3886-16/32 models to simulate 3883/4/5 operation, setmode 235 will duplicate the DSR signal setting into the DCD signal. This will affect the DCD setting in SHOW PORT AWAN, setmode 200, and setmode 211. This will not affect SHOW PORT STATUS (this command is not recommended).

P1=0 (default) is compatible with gem225 and earlier releases. The DCD signal reported will be the actual value for 3886-08 models, and will be zero for 3886-16/32 models.

P1=1 (any non-zero value) duplicates the DSR setting into DCD for all 3886 models. The actual DCD signal on 3886-08 models is ignored.

P2 is not used.

Only supported on 3886 models.

Setmode 236 – Get info

Setmode 236 retrieves, but does not alter, several items of information. Set P1 from the table below to select the particular item of information. The value is returned as P1. P2 is not used.

P1=1. Return the AWAN build number, example: 226

P1=2. Return the hardware platform code. All possible DECserver values are listed, even though AWAN features are only supported on certain models:

1
DS700_08
3886-08

2
DS700_16
3886-16 (earlier models)

3
DS700_32

4
DS900_TM
3886-32 (earlier models)

5 DS900_GM

6 DS900_MC

7 DS900_GMx

8 DS900_MCX

10
AS316

3886-16 (some earlier models)

12
DS716

3886-16 (newer models)

13
DS732

3886-32 (newer models)

16 DS90_TL

17 DS90_M

P1=3. Return the number of asynch ports (8, 16, or 32)

P1=4. Return the type of asynch connector:

RJ45
8

DB25
25

P2 is not used.

Not supported on 3883/4/5 models.

Setmode 237 – Setmode 38 compatibility

P1=1 (default) selects setmode 38 handling in a manner compatibile with 3886 releases 226 and earlier. Note that this handling is almost, but not exactly, identical to traditional ATP6100.

P1=0 selects setmode 38 handling identical to ATP6100.

P2 is not used

Refer to setmode 38 for details.

Not supported on 3883/4/5 models.

.

Setmode 238 – Writeread synchronization

P1=0 (default) is compatible with GAP A40 and previous releases. If multiple NSK application processes are simultaneous performing WRITEREAD operations on a single window, it is possible for a WRITEREAD to be interrupted between the WRITE phase and the READ phase, and a second WRITE operation of the WRITE phase of a second WRITEREAD operation may be performed immediately, before waiting for the READ phase of the first WRITEREAD operation to complete. This can an problems with certain (rare) applications that depend on multiple simultaneous WRITEREADs to be handled in strict synchronization.

P1=1 selects “ATP6100” style synchronization of WRITEREAD requests. After the WRITE phase of a WRITEREAD, the READ phase will be immediately entered, and any other queued WRITE or WRITEREAD operation will be deferred until the READ phase of the first WRITEREAD is complete.

P2 is not used

Not supported on 3883/4/5 models.

Setmode 239 – CDSISR Checking

Under rare circumstances (generally when a port is not in session), AWAN 3886 may not detect modem signal changes. This can cause problems with certain applications, especially when half-duplex is used. Setmode 239 enables improved detection of modem signal changes. P1=2 (default) is compatible with AWAN 229 and previous releases. This setmode should only be used when recommended by Gemini support staff.

P1=1 Turn on CDSISR checking only. Every 5 seconds, the current settings for modem signals are read from all ATAP ports which are in session and compared to the previously saved readings. If there is a difference, a special CTRACE record is generated. No other action is taken.

P1=2 Turn off CDSISR checking and refresh. This is the default at session startup, and is compatible with 229 and earlier releases.

P1=3 Turn on CDSISR checking (see P1=1) and automatic repair. If a difference is detected, an automatic refresh (see P1=4) is done. For development use only.

P1=4 Force a one-time refresh by reading the hardware signals and handling any apparent differences as if the signal had just changed. For development use only.

P1=5 Force the saved modem signals to the values specified in P2 to facilitate testing. For development use only.

P1=6 Turn on CDSISR checking (see P1=1) and special refresh. At key points (session startup, before control 11/12, setmode 200, and SHOW PORT AWAN), an automatic refresh (P1=4) is done to ensure that the latest signal settings are used. This is recommended for applicationa having problems with “lost” modem signal changes.

P2 Used only when P1=5

The values for P2 and the values returned for last-params are reserved for use by Gemini development.

Not supported on 3883/4/5 models.

Setmode 240 – Expanded CTRACE buffering

CTRACE records are generated inside the AWAN for port events such as data in, data out, modem signal change, GAP messages in and out, etc. These messages are sent to GAP using the same TCP connection as regular port traffic. To avoid having CTRACE messages saturate the bandwidth and interefere with regular port traffic, AWAN will discard CTACE records when the queue of messages to GAP exceeds a threshold. When the queue size is reduced, CTRACE recording is resumed. Sometimes the missing CTRACE data is essential to analysis, so setmode 240 was created increase this threshold.

P1=<qmax> Values from 20 to 1000 are allowed. The default is 100. This value applies to the entire AWAN, not just the port, and will remain in effect until changed by another setmode 240 or by AWAN reboot.

WARNING: Large valuws can seriously interfere with regular port traffic, and can even result in AWAN crash and reboot.

This setmode should only be used when recommended by Gemini support.

Not supported on 3883/4/5 models.

Setmode 241 – Delay after DTR change

Setmode 241 allows for a delay after a DTR change, deferring any writes until the DTR signal change has had adequate time to stabilize. Some devices reset upon a DTR change and do not recognize data from the AWAN for a short period of time.

P1 defines the delay after a raise of DTR (control 11, etc). P1=0 (default) means no delay. P1>0 defines the time interval, in seconds, to delay writes after a raise of DTR.

P2 defines the delay after a drop of DTR (control 12, etc). P2=0 (default) means no delay. P2>0 defines the time interval, in seconds, to delay writes after a drop of DTR.

Important notes for P1 and P2:

Maximum value is 10 (10 seconds)

Accuracy is plus or minus 1 second; a value of 1 may actually be as short as 0 (zero) seconds and as long as 2 seconds. Therefore, a minimum value of 2 is recommended to give an actual range of 1 to 3 seconds.

The delay happens regardless of the previous setting of the DTR signal; for example, if P1=2 and DTR was already high, and a control 11 was done, then a 2 second delay would be enforced before the next write is allowed.

The delay is measured from the time of the signal change request; if the application does not perform a write for a period of time that is longer than the P1/P2 value, as appropriate, will not be delayed. Only writes that occur immediately after the signal change will be delayed.

The delay is transparent to the application and does not affect write timeouts. The application should be aware that the first write operation may take a slightly longer period of time and not timeout prematurely.

Not supported on 3883/4/5 models.

Setmode 242 – Monitor DSR Drop

Setmode 242 remembers a drop of the DSR signal that occurs when no I/O request (READ, etc) is active.

P1=0 (default) is compatible with AWAN 3886 release 233 and earlier. If the DSR signal goes low and then back to high when no application I/O requests are active, then the temporary loss of DSR is effectively ignored.

P1=1 When DSR goes low, a PENDING_MODEM_ERR flag is set. If any application I/O request is active, the request is completed with femodererr (140) and the PENDING_MODEM_ERR flag is cleared. If no I/O is active, PENDING_MODEM_ERR flag remains set until the next application I/O request, which is completed with femodererr (140) and the PENDING_MODEM_ERR flag is then cleared. In this way, the application is guaranteed to be notified, via femodererr (140), that DSR has dropped.

If an I/O request (READ, WRITE, or WRITEREAD) is active when the DSR signal drops, femodemerr (140) is returned regardless of the setting of setmode 242.

If an I/O request is received when DSR is low and PORT SIGNAL CONTROL is ENABLED, femodemerr (140) is returned regardless of the setting of setmode 242.

P2 is unused

Not supported on 3883/4/5 models.

Setmode 243 – Enable setmode 11

GAP A48/AWAN gem240 and earlier did not completely disable asynch BREAK on setmode 11,0 and setparam 3,0. A READ or WRITEREAD operation could still terminate fith febreak 111 status.

Setmode 243 allows BREAK to be completely disabled when setmode 11,0 or setparam 3,0 is used. GAP release A49 or later is required to permit setmode 11 and setparam 3 messages to be interpreted by the AWAN to disable break.

P1=0 (default) is compatible with AWAN 3886 release 240 and earlier. Setmode 11,0 and setparam 3,0 will disable only the BREAK system message; READ and WRITEREAD operations will complete with febreak 11 status when asynch BREAK is received.

P1=1 allows GAP A49 later to send setmode 11,0 and setparam 3,0 messages to the AWAN which will completely disable BREAK.

P2 is unused

Not supported on 3883/4/5 models.

 Standard ATP6100 Setmode functions

Any standard ATP6100 Setmode not listed in this section will be rejected with error 2 - unsupported function.

Setmode 6 - spacing

P1.<15>=1 (default) - add CR/LF to write

P1.<15>=0 – do not add any suffix to user data

Setmode 7 - Auto LF on CR

P1.<15>=0 - echo CR only in response to received CR

P1.<15>=1 (default) - echo CR/LF in response to received CR

Setmode 8 - Block -vs- ITI mode

Ignored for ATAP. For 6530, P1=0 selects ITI mode; P1=1 selects block mode.

Setmode 9 - set interrupt chars

GAP handling of Setmode 9 was changed in AWAN server firmware revision GEM028 to comply with ATP6100 handling. Refer to the sections "Interrupt Character Handling" and "Setmode 217" for related information.

When both P1 are P2 are specified, they are treated as four bytes, and their order does not matter. For example, the following Setmode 9 calls are equivalent:

Call Setmode (fnum , 9 , %h080d , %h1819) ;

Call Setmode (fnum , 9 , %h1819 , %h080d) ;

If only one of P1 or P2 is specified, then the missing parameter is ignored. For example, the following three are equivalent:

Call Setmode (fnum , 9 , %h0a0d) ;

Call Setmode (fnum , 9 , , %h0a0d) ;

Call Setmode (fnum , 9 , %h0a0d , %h0a0d) ;

The above example also demonstrates that specifying an interrupt character more than once has the same effect as specifying it just once.

If either of P1 or P2, or both, are specified, then the interrupt character table is cleared to all zero action codes ("normal") and the following processing is done for each specified byte value:

cr (0d)
define cr (0d) as action code 4 (Enter). NOTE: The character set by Setmode 223, which defaults to CR (0d) is used.

bs (08)
define bs (08) as action code 1 (backspace)

^x (18)
define ^x (18) as action code 2 (line erase)

^y (19)
define ^y (19) as action code 3 (eof)

anything else - define the specified byte as action code 5 (termination)

The following setmode 9 calls, which represent the default settings, are equivalent:

Call Setmode (fnum , 9 , %h0818 , %h190d) ;

Call Setmode (fnum , 9 , %h080d , %h1819) ;

Setmode 9 always returns the previous settings of P1 and P2; thus Setmode 9 without either P1 or P2 can be used to retrieve the current settings without changing them. The AWAN server returns the previous values in a different, although functionally equivalent, manner. The four bytes are returned in collating sequence order. For example, the default settings are returned as follows:

Call Setmode (fnum , 9 , %h080d , %h1819) ;

Call Setmode (fnum , 9 , , , lp) ;

... lp [0] = %h080d

... lp [1] = %h1819

If fewer than four different interrupt characters are defined, then the first (lowest binary value) interrupt character is replicated in the "unused" spots in last params:

Call Setmode (fnum , 9 , %h080d) ;

Call Setmode (fnum , 9 , , , lp) ;

... lp [0] = %h080d

... lp [1] = %h0808

Call Setmode (fnum , 9 , %h0a0a) ;

Call Setmode (fnum , 9 , , , lp) ;

... lp [0] = %h0a0a

... lp [1] = %h0a0a

In all cases, the values returned as last params can be used in a subsequent call to setmode 9 to restore the original settings.

Setmode 10 - set (inbound) parity checking

For 3883/4/5 models:

If Setmode 219 P1=2, Setmode 10 is rejected with file error code 2.

If Setmode 219 P1=1, Setmode 10 is ignored with file error code 0.

If Setmode 219 P1=0, Setmode 10,0 changes both inbound and outbound parity to NONE, and Setmode 10,1 is ignored.

See SETMODE 219 and Setmode 24

.
For 3886 models:

P1<>0 (default) enable parity checking. When an input byte is received with incorrect parity (as defined by setmode 24 or CHANGE PORT PARITY), reads are completed with file error 120.

P1=0 disables parity checking. Input data bytes received with bad parity will not cause an error.

Setmode 11 – standard handling. See setmode 243.

Setmode 13 - set read termination on ETX or ETB character

P1=0 no action is taken but a successful completion is returned

P1=1 terminate 1 character after ETX or ETB

P1=3 terminate 2 characters after ETX or ETB

PI=2, P1>3 rejected with file error code 2

The ETX and ETB characters are defined by setmode 222; default is ETX set to hex 03 and ETB disabled.

Setmode 14 - set read termination on interrupt chars

P1.<15>=1 default - terminate on interrupt char

P1.<15>=0 transparent mode

Setmode 20 - echo

P1.<15>=1 default - echo

Setmode 22 - set baud rate

Table 5-4. Setmode 22 Baud Rate Parameters

Setmode 22 P1 value
Baud Rate

0
Not allowed

1
75 (3886 only)

2
110

3
134

4
150

5
300

6
600

7
1200

8
1800 (3886 only)

9
2000 (3886 only)

10
2400

11
Not allowed

12
4800

13
7200 (3883/4/5 only)

14
9600

15
19,200

16
Not allowed

17-32
Not allowed

33
38,400

34
57,600

35
115,200

36 or greater
Not allowed

P1 values which are not allowed result in file error 2.

Setmode 23 - character size

P1=0-3 size 5-8 bits

3886 only supports P1=2-3 for size 7-8 bits

Setmode 24 - outbound parity generation

For 3883/4/5 models:

If Setmode 219 P1=2, Setmode 24 is rejected with file error code 2.

If Setmode 219 P1=1, Setmode 24 is ignored with file error code 0.

If Setmode 219 P1=0, Setmode 24 changes both inbound and outbound parity as follows:

Setmode 24 P1=0
Odd parity (inbound and outbound)

Setmode 24 P1=1
Even Parity (inbound and outbound)

Setmode 24 P1=2
No parity (inbound and outbound)

See also Setmode 219 and Setmode 10.

For 3886 models:

Setmode 24 P1=0
Odd parity (inbound and outbound)

Setmode 24 P1=1
Even Parity (inbound and outbound)

Setmode 24 P1=2
No parity (inbound and outbound)

Setmode 27 - set system spacing mode

P1=0 default - postspace

P1=1 prespace

Setmode 28 - reset to default values.

First, all setmodes (with certain exceptions) are reset to default values as described in this manual. Then, any SCRIPT setmodes are resent. The exceptions, which are not affected by setmode 28, are setmodes:

215

216

Setmode 38 - special line termination mode and character

For P1=0 (“NOCOUNT”) or P1=1 (“COUNT”), set special line termination mode with P2 specifying the new line termination character. For P1=0, the termination character is excluded from the read buffer and count. For P1=1, the termination character is included in the read buffer and count.

For P1=2 (“RESET”) (default), special line termination mode is reset. The line termination character is set back to carriage return (%h0d), and the normal line termination rules described under Read again apply. The normal interrupt characters (CR, BS, Ctrl-X, Ctrl-Y) as reset to default at session initiation or Setmode 28, or as redefined by Setmode 9, are still in effect. Each incoming character is compared first against the Setmode 38 special termination character, then the normal interrupt characters. If this action is not desired, then use Setmode 9 P1=0 and P2=0 to disable them.

NOTE: The above handling of setmode 38 is slightly different from ATP6100 but will be retained to avoid regressions with GAP users who depend on this behavior. The default setting of setmode 237,1 works this way.

With ATP6100, the setmode 38 is ignored unless both (a) interrupt characters are enabled by setmode 14,1, and (b) the special termination character (setmode 38 P2) is defined as a interrupt character by setmode 9. This behavior can be selected by setmode 237,0 which is available on 3886 models only as of version gem227.

Conversion from CMI Configuration

A partial list of CMI configuration attributes is given, along with the suggested GAP equivalents.

AUTODCON

See setmode 216,4 and control 11.

AUTOLF

ON = Setmode 7,1. OFF = Setmode 7,0.

CHARSIZE

7 = Setmode 23,2. 8 = Setmode 23,3. GUI Change Port Properties Line Charsize, CLI Change Port Char Size.

CTSFLOW

ON = Setmode 208,2. OFF= Setmode 208,0 (no flow control) or Setmode 208,1 (XON flow control). GUI Port Properties Line Flow, CLI Change Port Flow.

DUPLEX

Setmode 231

ECHO

ON = Setmode 20,1. OFF = Setmode 20,0.

INTCHAR (and INTCHAR2/3/4)

Setmode 9.

INTTERM

Setmode 14

ETXCHAR

Setmode 222.

ETXENABLE

Setmode 13.

ETB (Sysgen/Coup parameter; no CMI equivalent)

Setmode 222 p2

LINECHAR

Setmode 223

MODEM

ON = Setmode 210,1. OFF = Setmode 210,0. See Setmode 216. CLI Define Port Signal Control.

PARITY

NONE = Setmode 24,2.
 EVEN = Setmode 24,1. ODD = Setmode 24,0. GUI Port Properties Line Parity. CLI Change Port Parity.

PARITYCHK

ON = Setmode 10,1. OFF = Setmode 10,0. This is generally ignored. See Setmode 10.

RECSIZE

See RECLEN parameter of ADD WINDOW command.

SPACING

NONE = Setmode 6,0. PRE = Setmode 6,1 and Setmode 27,0. POST = Setmode 6,1 and Setmode 27,1.

SPECIALMODE

Setmode 38 and 237

SPECIALCHAR

Setmode 38 P2

SPEED

Setmode 22. GUI Port Properties Line Speed. CLI Change Port Speed.

XONCHAR - XOFFCHAR

%h11/%h13 = Setmode 208,1. %h00 = Setmode 208,0 (no flow control) or Setmode 208,2 (CTS flow control). GUI Port Properties Line Flow Control. CLI Change Port Flow.

The basic port properties for baud rate, character size, parity, and flow control (CMI parameters CHARSIZE, PARITY, SPEED, CTSFLOW, and XONCHAR) should be permanently defined by the GUI or CLI to the proper values. If the permanent values are incorrect, but are changed via Script or setmode to the proper values by the application, then a problem can occur if the async device should happen to send input data to the AWAN before the application has changed the settings. This can result in break, parity, and framing errors to the AWAN. If the device is streaming a large amount of data into the AWAN, this can generate hundreds of errors per second which can seriously degrade AWAN performance or even cause an AWAN reboot. These problems only occur with 3883/4/5 models; AWAN 3886 models are not affected. If the port properties are permanently set to match the device, then the input data can easily ignored, without impact, by the AWAN when the application is not running.

Guardian File System Error Codes

0
Normal completion

1
End of file (Control-Y).

2
Invalid operation, such as undefined Setmode P1 value.

110
Requesting application does not have break access

111
Break received

120
Parity or framing error detected

140
Modem error. CD was not present, or dropped.

162
Timeout on 6530 block mode operation.

171
First byte timeout expired (see Setmode 203).

172
Inter byte timeout expired (see Setmode 204).

173
ATAP: Total read timeout expired (see Setmode 205).

173
6530: LRC/NAK failure after repeated retries

174
Write timeout expired (see Setmode 206).

175
Typeahead buffer overrun.

176
Carrier Detect Dropped (see Setmode 211).

177
I/O stopped by Setmode 213

191
6530: hard reset (ENQ CR, hex 05 0d)

Note: In some cases, data is returned to read and writeread even when the error code in non-zero; always check the I/O count returned from read, writeread, or awaitio calls.

Modem “AT” Commands

Modem Off (setmode 210,0) or Port Signal Control Disabled is required because most AT modems will not accept AT commands unless the modem sees DTR (which the standard AB Modem Hood connects to RTS at the AWAN server).

If the modem is configured to not automatically answer (ATS0=0 or equivalent dip switch), then Port Signal Control Disabled is OK. To answer calls, the application can set ATS0=1, or use ATA in response to “RING” status messages.

If the modem will answer the phone whenever DT is present, then Port Signal Control Enabled is recommended. This will keep DTR off until the ATAP application opens the port and does setmode 210,0 to turn modem off, does control 11, or setmode 200 to explicitly raise RTS at the server (which usually is connected to DTR at the modem).

The modem should monitor DTR, not accepting AT commands and not answering incoming calls unless DTR is present.

The modem should raise DCD only when remote carrier is detected.

The modem should not echo AT commands (ATE0).

The ATAP application should not echo while in AT command mode (setmode 20,0); echo can be re-enabled after connection.

Interrupt character processing in general should be disabled (setmode 14,0 or setmode 38). Consider a short read timeout (setmode 205).

Control 11 is the preferred method to await connection to the remote for both answer and call mode.

The ATAP application should generally suppress automatic spacing (setmode 6,0) at least while in command mode, explicitly adding ascii carriage return (%h0d) to the end of all AT commands.

Chapter 6
- 6530 API

Overview

This chapter discusses the GAP API for 6530 terminals. . This API is based upon the NonStop ATP6100 API for the 6100 series communications controllers. Where possible the ATAP API is compatible with ATP6100 with extensions added for addition function. The 6530 API in general is identical to the ATAP API, and the rules in Chapter 5 - ATAP API apply except as described below.

Operations not supported for 6530 API

Setmode 9 - Define interrupt characters

Setmode 13 - Read termination on ETX

Setmode 14 - Enable interrupt characters

Setmode 27 - Spacing mode

Setmode 38 - special terminator

Setmode 201 - Send Break

Setmode 202 - Writeread spacer prefix

Setmode 203 - First-byte timeout

Setmode 204 - Inter-byte timeout

Setmode 205 - Total read timeout

Setmode 206 - write timeout

Setmode 208 - flow control - DO NOT USE

Setmode 211 - CD Loss notification

Setmode 212 - Set CD timeout

Setmode 213 - Stop pending I/O

Setmode 214 - DCD override

Setmode 215 - ARC compatibility

Setmode 217 - Extended interrupt character handling

Setmode 218 - carriage control

Setmode 221 - UART read buffer size

Setmode 222 - ETX character

Chapter 7
- EMS Events

Overview

This chapter discusses the EMS events generated by GAP. GAP only reports events that affect an entire AWAN or the entire GAP process. Events that affect only a single AWAN port or GAP window are not reported.

The GAP release subvol contains the standard-format EMS files SGAPTMPL, ZGAPDDL, and ZGAPTMPL. Refer to Chapter 2 under DSV Contents.

For all EMS events, field <1> is the GAP process name.

1
zgapems-evt-abend

<1> Process abend due to <2>

The GAP process has detected an internal error and is terminating. If GAP has a backup process, it will takeover. A ZZSAnnnn file will be created in the same subvol as the GAP object file.

<2>

a brief textual description of the error.

ACTION:
Restart GAP process if backup did not automatically take over. Send ZZSAnnnn file, PAK-d or ZIP-d, to Gemini with a trouble report for analysis.

2
zgapems-evt-alloc

<1> Allocatesegment err <2> POOL^SIZE <3> words

GAP cannot start because of an error allocating an extended data segment for its working memory pool.

<2>

error code from Guardian segment_allocate_ call

<3>
word size of edseg being allocated (see PARAM POOL^SIZE)

ACTION:
Adjust PARAM POOL^SIZE and restart GAP.

3
zgapems-evt-starting

<1> <2> program starting <3>

Normal startup message.

<2>

The GAP version and release date

<3>

Copyright information

ACTION:
None.

4
zgapems-evt-param-error

<1> Error in PARAM <2> <3>

Error detected in PARAM at startup. The PARAM is ignored and startup continues.

<2>

The name field of the PARAM

<3>

The value field of the PARAM

ACTION:
Correct the PARAM and restart GAP.

5
zgapems-evt-gftcom-start-err

<1> Error <2> <3> starting GFTCOM^OBJECT <4>

GAP could not start GFTCOM as specified by PARAM GFTCOM^OBJECT.

<2>

Error code from Guardian newprocess call

<3>

Additional error code from Guardian newprocess call

<4>
GAPCOM object filename from PARAM GFTCOM^OBJECT

ACTION:
Correct PARAM GFTCOM^OBJECT and restart GAP.

6 zgapems-evt-backup-started

<1> Backup created in cpu <2>

Normal creation of GAP backup process at GAP startup time, after a BACKUPCPU command, after a backup cpu became available, or after a backup takeover.

<2>

cpu number where backup process was created

ACTION:
None.

7
zgapems-evt-backup-stopped

<1> Backup stopped

The GAP backup process stopped due to a BACKUPCPU command or a failure of the cpu where the backup was running.

ACTION:
None.

8
zgapems-evt-backup-start-err

<1> Backup create error <2> <3>

The GAP backup process could not be started.

<2>

Error code from Guardian newprocess call

<3>

Additional error code from Guardian newprocess call

ACTION:
If the error code indicates that the specified cpu is not available, consider using a different backup cpu. For other error codes, contact Gemini.

9
zgapems-evt-checkalloc

<1> Checkallocatesegment err <2>

The GAP backup process could not allocate an extended data segment for its memory pool.

<2>

Error code from Guardian segment_allocate_chkpt_

ACTION:
Contact Gemini.

10
zgapems-evt-misc

<1> <2>

This event provides additional information for a separate EMS event.

<2>

Text of additional information

ACTION:
As specified for the separate EMS event

11 zgapems-evt-backup-loop

<1> Backup creation loop - BACKUPCPU NONE assumed

GAP has repeatedly started a backup process, but the backup processes stopped before completing initialization. After 5 attempts, GAP stops using a backup.

ACTION:
If this is caused by a temporary system-wide resource shortage, the backup can be restarted with the GAPCOM BACKUPCPU command.

12
zgapems-evt-ckpt-fe

<1> Backup checkpoint16file err <2>

An error was detected checkpointing data to the GAP backup process. The backup process is stopped and will be automatically restarted.

<2>

Error code from Guardian checkpoint call

ACTION:
None.

13
zgapems-evt-ckopen-err

<1> Checkopen err <2> file <3>

An error was detected checkpointing a file open to the GAP backup process. The backup process is stopped and will be automatically restarted.

<2>

Error code from Guardian checkpoint call

<3>

The file open being checkpointed

ACTION:
None

14
zgapems-evt-trace-start

<1> Trace started to file <2> size <3>

A GAP trace was started by the TRACE command or at startup time by PARAM TRACE^FILE

<2>

Trace filename

<3>

Trace size in words

ACTION:
None.

15
zgapems-evt-trace-stop

<1> Trace stopped

A GAP trace file was closed.

ACTION:
None.

16
zgapems-evt-trace-segment

<1> Trace not started to <2> size <3> allocatesegment error <4>

A trace file could not be started as requested by TRACE command or PARAM TRACE^FILE.

<2>

Trace filename

<3>

trace size in words

<4>

error code from Guardian allocatesegment call

ACTION:
Adjust the parameters and restart the trace.

18
zgapems-evt-takeover

<1> Backup process takeover due to: <2>

The GAP backup process has taken over from the primary process.

<2>

The reason for the takeover:

primary process stopped

(Rare) Generally can only occur if a TACL “STOP cpu,pin” command was used against the primary process.

primary process abended

The GAP process terminated in error. There is usually a separate EMS message describing the reason for the abend, and there is usually a ZZSAnnnn file created.

primary cpu failure

Failure of the cpu where the GAP primary process was running.

primary checkswitch

(Rare). CHECKSWITCH command was used.

ACTION:
None unless required by other EMS events. GAP will automatically restart a new backup process.

19
zgapems-evt-trace-error

<1> Trace not started to <2> size <3> error <4> / <5>

Unexpected trace error.

ACTION:
Contact Gemini

20
zgapems-evt-trace-size-file

<1> PARAM TRACE^SIZE must precede PARAM TRACE^FILE

A PARAM was detected out of order.

ACTION:
Adjust PARAM order and restart GAP. Alternatively, use TRACE command.

21
zgapems-evt-reply-error

<1> Reply error <2>

An internal error was detected.

ACTION:
Contact Gemini.

22
zgapems-evt-stopping

<1> Process stopping - SHUTDOWN command

GAP process is stopping at the request of a SHUTDOWN command. Both primary and backup process (if any) are stopping.

ACTION:
Restart GAP when needed.

23
zgapems-evt-cpuswitch

<1> Primary process stopping - CPUSWITCH command

The GAP backup process did a takeover from the primary process due to a CHECKSWITCH command.

 ACTION:

None

24
zgapems-evt-enter-debug

<1> Process entering debug

The GAP process is entering debug (Inspect) due to a DEBUG command. This is used only by Gemini development.

ACTION:
None.

25
zgapems-evt-exit-debug

<1> Process exiting debug

The GAP process has resumed from a debug (Inspect).

1000
zgap-evt-connect-ok

<1> Connected to AWAN <2> <3> <4> firmware <5>

GAP has established contact (a TCP/IP session) with an AWAN.

<2>

AWAN name from ADD SERVER

<3>
TCP/IP process name from ADD SERVER SUBNET (primary or secondary)

<4>
IP address of AWAN from ADD SERVER IPADDR (primary or secondary)

<5>

version of firmware running in the AWAN

ACTION:
None

1001
zgap-evt-cannot-connect

<1> Cannot connect AWAN <2> <3> <4> Detail: <5>

GAP is unable to connect to an AWAN.

<2>

AWAN name from ADD SERVER

<3>
TCP/IP process name from ADD SERVER SUBNET (primary or secondary)

<4>
IP address of AWAN from ADD SERVER IPADDR (primary or secondary)

<5>
Details indicating the Guardian file error code, TCP/IP socket error code, and the particular operation.

ACTION:
Verify AWAN is powered up and showing the moving “figure-8” pattern in the LED display.

Verify AWAN has a valid 3886-6530 flashram card installed (use SHOW AWAN)

Verify network connectivity (try PING from NonStop system to AWAN).

1002
zgap-evt-connect-lost

<1> Connection lost AWAN <2> <3> <4> Detail: <5>

GAP’s TCP/IP session with the AWAN failed

<2>

AWAN name from ADD SERVER

<3>
TCP/IP process name from ADD SERVER SUBNET (primary or secondary)

<4>
IP address of AWAN from ADD SERVER IPADDR (primary or secondary)

<5>
Details indicating the Guardian file error code, TCP/IP socket error code, and the particular operation.

ACTION:
GAP will automatically attempt to reconnect with the AWAN. If this attempt fails, another EMS event will be generated.

1006
zgap-evt-license-ok

<1> GAP License validated, expires <2>

Normal message on GAP startup when a new format LICENSE file is used. The LICENSE file has been verified and has correct system number, expiration date, and product information.

<2>
The expiration date. GAP will no longer start on or after this date.

ACTION:
None

1007
zgap-evt-config-key-ok

<1> GAP License validated (Config key), expires <2>

Normal message on GAP startup when old format RUNCONF (CONFIG utility) license is used.

<2>
The expiration date. GAP will no longer start on this date.

ACTION:
None

1008
zgap-evt-config-err

<1> GAP License Exception (Config Key) <2>

The old format RUNCONF license was rejected. GAP did not start.

<2>

Detail information

ACTION:
If <2> shows “expired”, contact Gemini for a new license.

ACTION:
If <2> shows “wrong system”, make sure the proper RUNCONF has been used for the specific NonStop system (Expand node).

1009
zgap-evt-feature-not-licensed

<1> GAP Feature <2> not licensed, ADD WINDOW rejected

GAP is using a new format LICENSE file which does not support ATAP or 6530 options. The ADD WINDOW command is rejected.

<2>

Is the window type, ATAP or 6530

ACTION:
Contact Gemini.

1010
zgap-evt-expire-in-days

<1> GAP Warning: license expires in <2> days

This messages appears on GAP startup and every morning at 9:00 AM when fewer than 32 days remain on the license expiration.

<2>

The number of days until expiration.

ACTION:
Contact Gemini.

1011
zgap-evt-license-exception

<1> GAP License Exception <2>/<3> File: <4> Reason: <5>

GAP failed to start because the new format LICENSE file was in error.

<2> <3>
Internal error codes for use by Gemini

<4>

The LICENSE filename

<5>
A text description of the license error.

ACTION:
Depends on the particular error in <5>:

expired

Contact Gemini for a new license

Wrong system serial number

Run SYSINFO to display the exact system information. Contact Gemini with this information.

product not found in license file

Make sure the LICENSE file is for GAP and not another Gemini product.

license file corrupt

The LICENSE file has been modified or was improperly transferred as a text (EDIT-101) file to the NonStop system. Use the exact LICENSE file provided by Gemini and use TEXT or ASCII mode to transfer the file to the NonStop system.

1011
zgap-evt-license-generic

<1> GAP Generic License file - only AWAN tracing permitted

This LICENSE only supports GAP tracing of AWAN; it will not allow ADD WINDOW. (This is an advisory)

ACTION:
None

1012
zgap-evt-expired

<1> GAP Warning: license expired; if GAP is stopped, it cannot restart

When GAP was started before the expiration date, and is still running after the expiration date is reached, this message is displayed every morning at 9:00 AM as a warning..

ACTION:
Contact Gemini for a new LICENSE

1013
zgap-evt-license-check-stop

1> GAP LICENSE^CHECK complete; stopping now

When GAP was started in LICENSE^CHECK mode, aftere the LICENSE is checked and appropriate EMS messages displayed, GAP stops. This is an advisory message.

ACTION:
None

1014
zgap-evt-license-refreshed

<1> GAP License refreshed and validated, expires <2>

A new LICENSE file was accepted (by GAPCOM LICENSE^REFRESH or the 9:00 AM automatic refresh) and used to extend the expiration date.

<2>

The new expiration date

ACTION:
None

1015 zgap-evt-cannot-bind

<1> Cannot bind AWAN <2> <3> Detail: <4>

When ADD SERVER parameter SRCPORT is used, GAP could not bind to the specified TCP/IP port number

<2>

The AWAN name from ADD SERVER

<3>
The NonStop TCP/IP process name from ADD SERVER parameter SUBNET.

<4>

Details of the TCP/IP error code.

ACTION:
DELETE SERVER, then ADD SERVER using a different SRCPORT number or a range or SRCPORT numbers.

Chapter 8
- Troubleshooting

Overview

This chapter discusses troubleshooting techniques.

Standard AWAN Support and GAP Support

HP NonStop Division provides support only for standard AWAN features such as RAS and 6530 terminals via Telserv. Problems with GAP and ATAP should be directed to Gemini. If a problem is suspected with standard AWAN features, first try to reproduce the problem without GAP and without any ports configured as Type ATAP before calling NonStop support. If in doubt, contact Gemini first.

GAP cannot contact server

Wait 60 seconds after everything is first connected, since GAP automatically retries every 60 seconds.

AWAN server operational?

Can AWAN be contacted by GUI, ASM, or Telnet?

Can AWAN be PINGed from a network workstation or the NSK host?

Can the NSK host be PINGed from the AWAN?

Does AWAN IP address match GAPCOM Add Server command?

From a CLI prompt (async terminal connected to AWAN or Telnet into AWAN from a workstation), try PING to the NSK host IP address.

Proper 3883/4/5 AWAN software version.

From CLI, the last lines of the login display should look like:

Release V3.1.5C15 AWAN T0375 31MAY99 build 035

Local>

Check the "build" number to verify correct AWAN version.

From The GUI, Server Properties, after the version number box should display the three-digit build number.

Proper 3886 AWAN software version and 3886-6530 feature installed:

Local> SHOW AWAN

AWAN Features Enabled

Hardware Model 3886-16

Software build 207

Vproc T0484 08NOV99

File Error 12 on Open of $GAP.#PORTxx

Verify that Port Access is set to Remote from the CLI or GUI management tool.

Verify that Port Type is set to ATAP.

Unexpected Results - Using ATAPD

If certain ATAP operations are not producing the expected results, try the ATAPD program included in the GAP DSV. If possible, reproduce the problem using a small ATAPD script. This will greatly expedite problem analysis and resolution by Gemini support staff.

ATAPD is a prototyping and debugging aid. ATAPD is a TAL program and is provided in both source and object forms. Refer to the TAL source file ATAPDSRC for installation and usage instructions. ATAPD can be run interactively, (i.e. one Setmode, Writeread, etc., at a time) or from a script stored in an EDIT file. Users of the ARC API may want to inspect the file ARCDCMD as an example of how to test this capability.

The ATAP application should generally suppress automatic spacing (setmode 6,0) at least while in command mode, explicitly adding ascii carriage return (%h0d) to the end of all AT commands.

Tracing

Gemini may recommend that a GAP trace file be created:

GAPCOM

% TRACE ON trace1

% CTRACE ON

... run the failing test

% TRACE OFF

If the AWAN is busy, trace output can be restricted to a single port or to a group of ports by the PORTS field of the CTRACE command :

CTRACE PORTS (7)

CTRACE PORTS (1,2,32)

To minimize trace output:

Configure a separate GAP process (example: $GAP2) for the port being traced. Use only a single ADD SERVER and ADD WINDOW.

Minimize activity on other ports of the AWAN being traced.

Memory Dumping:

The contents of AWAN memory can be dumped to a NSK disk file as follows:

GAPCOM

% MEMDUMP filename
Where filename refers to a NSK disk file which will be created. There are some important considerations for this command:

Use this command only when directed by Gemini support staff.

This command will take several minutes to complete and will impact GAP performance.

This command will transfer several megabytes from the AWAN to GAP, which might place a temporary burden on slow network routes.
Send the binary output file to Gemini for analysis. Please use ZIP or other compression which will greatly reduce the file size.
This command is entirely independent of TRACE and CTRACE features.
Chapter 8 – Release Notes

This chapter describes new features, fixes, and known problems for GAP software, which runs on the NonStop NSK host, and for AWAN firmware in 3883/4/5 models, or AWAN software in 3886 models. GAP software and AWAN firmware/software are separately released.

Prior to release A17, GAP changes were described in SOFTDOC files. The SOFTDOC files for these releases are now archived in the file SOFTDOC in the GAP DSV.

GAP A17 – 12 March 1998

1
Applications which do not have any I/O operation outstanding at the time of a session disconnect, and issue their next I/O after the session automatically reconnects, are now notified of the transient disconnect by receiving file error code 140 to the next I/O. The new PENDING^140 command can be used to disable this feature for compatibility with previous releases.

2
DELETE WIN and DELETE SERVER commands were incompletely processed, resulting in a subsequent ADD SERVER or ADD WIN for the same name being rejected. This is corrected.

3
Manual: GAPCOM example for setmode 215 was garbled.

4
Manual: Setmode 7 P1.<15> values 1 and 0 were reversed.

5 Manual: Setmode 22 displays supported baud rates and codes.

6 Only GAP (for D30) and GAPD40 are changed in this release. GAPC30 is still at version A15.

AWAN Firmware gem028.5 – 11 March 1998

The following changes since the gem028 general release concern ATAP users:

1 Setmode 13 support added.

2 CTACE not supports SELECT (TERMIN) which captures incoming data

3 Setmode 209 P2=1 enables type ahead (default at session connect and after setmode 28, which is compatible with 028.3 and earlier releases). P2=0 disables type ahead which discards any queued keyboard input after read completion and before read initiation. When Setmode 209 is specified in ADD SCRIPT, be sure to explicitly provide a value for P2, since SCRIPT always sends both P1 and P2, with zero as the default value. For example, to set the type ahead buffer to 64000 bytes:

ADD SCRIPT S64 209,64000,1

4
Setmode 9 now properly reports last-params.

GAP A18 – 08 May 1998

1 When GAP loses contact with the server due to network error or server failure, TCP/IP does not signal GAP for a timeout of up to several minutes. If an application repeatedly issued and cancel I/O requests during this time, GAP buffer space could become temporarily exhausted and cause GAP abend. This has been corrected by improved buffer management. Note that there was no problem after the connection loss was detected by GAP, only during the several minutes while TCP/IP was "timing out".
2
Only GAP (for D30) and GAPD40 are changed in this release. GAPC30 is still at version A15.
AWAN Firmware gem028.7 – 22 May 1998

1
Input overrun was not properly reported, with possible gaps in the data before overrunstatus (file error 175) was reported. Input overrun is now correctly handled as described in “Read Operations”.

2
Port Flow None would hang a port after the type-ahead buffer reached half-full, requiring AWAN reboot to clear the problem. This has been corrected.

AWAN Firmware gem028.14 - 03 July 1998

1
New setmode 219 to control setmode 10 and setmode 24 for parity settings.

AWAN Firmware gem028.17 - 11 July 1998

1
New setmode 220 to control file error code for unsupported setmodes.

2
Setmode 67 is handled by the new setmode 220 default value, and is no longer separately documented as being ignored with normal completion status.

3
Additional CTRACE trace items captured.

4
New CTRACE PORTS command.

AWAN Firmware gem028.18 - 25 July 1998

1
Setmode 10 modified slightly, compatible with previous operation for most users.

2
New manual section on conversion of CMI configuration parameters.

AWAN Firmware gem028.19 - 10 August 1998

1
AWAN CLI Show Server now displays the IP address, Expand Node Name, Process Name, GAP Server Name, and number of ATAP sessions active for connected GAP processes..

2
Show Port Status now displays the IP address, Gap Process name, and GAP window name for active ATAP sessions.

3
Show Port Status now displays bytes queued to the async output port and the type-ahead buffer size (kq, or bytes not yet read by the application).

4
UART read buffer size is calculated from the line speed to improve timeout and buffer full read completion accuracy. See new Setmode 221 for details.

5
AWAN memory dumps (for support use only).

6
Internal memory pool adjustments for improved performance.

7
Improved type-ahead buffer handling. This will improve performance, especially for ports which accumulate large amounts of input data due to slow application reads.

8
Improved GAP tracing. CTRACE can now specify a list of ports.

AWAN Firmware gem028.20 - 23 August 1998

1
Minor performance and tracing improvements, especially with large numbers of short writes.

2
Additional AWAN memory dump features.

GAP A19 - 25 July 1998

1
New Setmode 221, not needed for most applications.

2
New AWAN memory diagnostic commands (for support use only).

3
Clarification on device type (6,1) and Setmode 215.

AWAN Firmware gem028.21 - 25 August 1998

1
Minor improvements in timeliness of write completions.

AWAN Firmware 029 - 09 October August 1998

1
Minor transparent improvements in async and ethernet drivers..

2
For general information on this release, refer to SOFTDOC for T0373 AWAN Bootblock, T0374 AWAN GUI, and T0375 AWAN Firmware.

GAP A20 - 11 October 1998

1
More timely detection of loss of contact with AWAN. See KEEPALIVE.

2
Fix for improper file error code 177 completion on one window when an I/O operation was canceled on a second window.

3
New (unsupported) AWANCLI utility program.

4
Bad GAPD40 (only) object file shipped with A19 corrected.

GAP A21 - 05 November 1998

1
When the last remaining opener closes a window, the disconnect of the AWAN port is delayed for one second. This allows time for the last few bytes of the last write operation to be fully transmitted.

2
GAP object now has HIGHPIN and HIGHREQUESTERS attributes.

AWAN Firmware 030 - 15 January 1999

1
New Setmode 222 to define ETX character used with Setmode 13

2
Setmode 13 now properly returns the setting for P1. Formerly, only the low order bit of the previous setting was returned.

AWAN Firmware 031 - 31 January 1999

1
Support for 6530 via GAP, requires GAP A22.

GAP A22 - 31 January 1999

1
Support for WIN type 6530, requires firmware 031.

AWAN Firmware 032 - 08 February 1999

1
Fix 031 bug where ATAP writes did not complete.

2
Fix 031 bug with occasional hang of 6530 write.

AWAN Firmware 033 - 10 February 1999

1
New Setmode 223 to define line termination character (CR hex 0d). Documentation for interrupt character handling, read handling, and setmode 9 and 217 updated.

AWAN Firmware 034 - 23 April 1999

1
New Setmode 224 to define UART read timeout.

2
New Setmode 225 to define delay for Control 12 to keep DTR lowered.

3
Setmode 221 now takes effect immediately (after the current read completes) instead of after the next baud rate change.

AWAN Firmware 035 - 25 May 1999

1
There were no ATAP changes in firmware 035.

AWAN Firmware 036 - 16 June 1999

1
With setmode 38, termination character are now properly echoed, as controlled by setmode 20.

AWAN 3886 Software 207 - 08 November 1999

1
Initial release of 3886 product, including ATAP protocol.

AWAN 3883/4/5 Firmware 037 - 15 December 1999

1
There were no ATAP changes in firmware 037.

AWAN 3883/4/5 Firmware 038 - 03 January 2000

1
New setmode 219,3

GAP A23 - 13 January 2000

1
New ADD WINDOW parameter WRITE^DEPTH

AWAN 3883/4/5 Firmware 039 - 05 February 2000

1
There were no ATAP changes in firmware 039.

GAP A24 - 16 February 2000

1 Control 11 requests no longer complete prematurely with file error code 140.

2 Automatic window-port reconnection delay reduced from 5 seconds to (default) 1 second. This avoids timing problems with application control 11/12, AWAN port reset, and GAP reconnection.

3 New GAPCOM commands RECONNECT^DELAY^MIN and RECONNECT^DELAY^MAX.

GAP A25 – 11 June 2000

1 GAP now handles NSK system time changes (due to daylight savings transitions and SETTIME command) properly, avoiding temporary loss of contact with AWANs and file error 140 responses to applications.

2 Fix for GAP abend when contact with AWAN is lost and a Control 11 is pending.

GAP A26 – 16 July 2000

1
File system cancel requests could be occasionally mishandled on very busy systems, resulting in some read responses (incoming data) being discarded.

AWAN 3886 Software 208 – 23 July 2000

1 A cancel of a pending control 12 (setmode 255 P1>0) is now performed immediately instead of waiting for the timer expiration.

2 Show Port AWAN now only displays session-oriented parameters like setmode when a port is connected to a GAP window.

3 Show Port AWAN now displays the FSM state and mode for GAP 6530

4 Block (buffered) read is now used for improved performance and greatly reduced tracing oiverhead.

5 Type-ahead buffer activity is now traced

6 Setmode 215 P1=0 (rarely used) did not change the writeread prefix size. The writeread prefix is now set to zero.

7 A bug was fixed in ARC emulation (setmode 215 P1=1), where long output messages had errors at approximately 500 bytes into the message at 9600 baud (the offset where this error occurred varied with the port speed). For WRITE operations, 10 bytes would be lost at this point, and for WRITEREAD 10 bytes would be duplicated. At the end of the message, for WRITEREAD 10 bytes would be lost and for WRITE 10 bytes of garbage would be transmitted.

8 The permanent (nvram) setting (instead of the current setting) is now checked for Port Access Remote when processing port connect requests from GAP. This allows DEFINE PORT ACCESS REMOTE or CHANGE PORT ACCESS REMOTE to function properly for ATAP ports. Formerly, these commands worked erratically and sometimes would seem to require an AWAN reboot to clear.

9 CLI Logout Port command now properly disconnects ATAP sessions.

10 New setmode 216 setting P1=3 to use DCD instead of DSR for control 11. This is supported only on 3886-08 models with DB25 connectors.

11 New setmodes 229 and 230 (only for development use)

12 Several problems with handling of modem signals corrected. Control 11, control 12, setmode 210, and Port Signal Control now conform to the GAP manual.

13 Framing errors are treated like parity errors.

14 Permanent (nvram) port settings are now copied to current settings on port logout. Previously, parameters changed with DEFINE port would never be copied to the current settings, and therefore would not take effect, unless the AWAN was rebooted or the port was set to Port AWAN ANSI, then reset by Logout Port, and set back to Port AWAN ATAP.

15 GAP 6530 support added but not documented due to some block mode problems.

AWAN 3886 Software 209 – 27 July 2000

1 Setmode 22 (speed), 23 (char size), 24(parity), and 208(flow control) are now supported.

2 GAP 6530 officially supported. Block mode problems in 208 corrected.

GAP A27 – 28 July 2000

1 Fix for (rare) GAP abend on TCP/IP socket error on send_nw.

2 Default memory pool now 2 meg words (4mb)

GAP A28 – 02 August 2000

1
Setmode 28 now resends any script setmodes

GAP A29 – 04 August 2000

1 GAP no longer abends when detecting an invalid message from the AWAN. The connection to the AWAN is reset instead.

2 Improved error recovery when connection to the AWAN was lost.

3
GAP now replies feinvalop (file error 2) instead of feok (file error 0) to –147 system messages resulting from application calls to CONFIG_GETINFO_BYLDEV_ and CONFIG_GETINFO_BYNAME_.
AWAN 3886 Software 210 – 07 August 2000

1 When setmode 225 p1>0, control 12 no longer hangs

AWAN 3886 Software 211 – 10 August 2000

1 Setmode 13,1 now properly interprets setmode 9 interrupt characters.

2 New setmode 216 p1 values 4 and 5 for control 11 and control 12 operation more compatible with ATP6100.

3 GAP 6530 fix for Viewpt hang. Application WRITEREAD with zero read count is now handled same as an application WRITE.

AWAN 3886 Software 212 – 17 August 2000

1 Setmode 222 now allows p2 to specify an ETB character in addition to the ETX character for setmode 13,1/3.

2 New setmode 231 for half-duplex

3 Setmode 210,1 now drops DTR and RTS and 210,0 now raises DTR and RTS, as has always been described in the documentation. Software versions 207-211 had this reversed.

4 Show Port AWAN for ATAP ports now displays setmode 9 properly, with the same results as would be returned for setmode 9 last params.

5 Modem signal descriptions for Control 11 and Setmode 200 clarified.

AWAN 3886 Software 213 – 22 August 2000

1 Fix for input hang (no more input) after file error 175 (overrun)

2 Setmode 10 (enable/disable input parity checking) now supported

GAP A30 – 22 August 2000

1 Improved handling of cancel to release buffers more quickly

2 Default memory pool size increased to 4 meg words (8mb)

GAP A31 – 04 September 2000

1 Fix for cancel bug introduced in A30

2 New ADD SERVER fields SEC^SUBNET and SEC^IPADDR.

3 TCP/IP socket connect_nw requests are now timed out after 20 seconds instead of the TCP/IP typical default of 93 seconds. New CONNECT^TIMEOUT command.

12 Oct 2000 – Setmode 27 documentation corrected

AWAN 3883/4/5 Firmware 040

1
There were no ATAP changes in firmware 040.

AWAN 3883/4/5 Firmware 041 – 11 August 2000

1 GAP 6530 fix for WRITEREAD with zero read count, used by Viewpt.

AWAN 3883/4/5 Firmware 042 – 18 September 2000

1
Each AWAN can now support connections from 20 separate GAP processes. Previously, only 10 GAP connections were permitted.

AWAN 3883/4/5 Firmware 043 – 10 October 2000

1
There were no ATAP changes in firmware 043.

AWAN 3883/4/5 Firmware 044 – 23 October 2000

1 Port Type ATAP additional trace data captured for data flushed when type ahead is disabled by setmode 209,x,0.

2 Port Type ATAP When Port Flow XON and Port Input Flow Disabled are used, XON characters are no longer sent out at the beginning and end of each session.

AWAN 3886 Software 214 – 10 November 2000

1 Port Type ATAP now allows multiple control-11 requests to be simultaneously pending, from the same or different applications. All such requests will be completed at the same time when the appropriate signals are present or an error occurs. Previously, a second control-11 request received while the first control-11 request was still pending would cause a loop of messages

2 Port Type ATAP setmode 10,0 (disable input parity checking) now accepts all incoming bytes even if they do not match the configured port parity.

AWAN 3883/4/5 Firmware 045 – 22 November 2000

1
Port Type ATAP new setmode 232 to allow adjustment of the flush of the type-ahead buffer (setmode 209,x,0) in special circumstances. Default operation is compatible with previous releases.

AWAN 3886 Software 215 – 23 November 2000

1 Port Type ATAP with setmode 6,1: blank lines (zero write length) now properly add CR LF (hex 0d 0a). Previously releases sent no data, resulting in missing blank lines on some reports.

2 Port Type ATAP Setmode 218,1 now works as documented. Setmode 218 support was inadvertently left out of all previous 3886 software releases.

3 Port Type ATAP Setmode 27,1 no longer skips first two bytes of the output line. This bug was present in all previous 3886 software releases.

AWAN 3886 Software 216 – 18 December 2000

1
Port Type ATAP fix for setmode 231,1 hanging writes (would act as if CTS was never detected). This bug was introduced in release 214.

GAP Software A32 – 19 December 2000

1
New commands OPEN^TIMEOUT and OPEN^TIMEOUT^FE to allow termination of open requests which are waiting for a TCP connection from GAP to the AWAN. This is required for PSPOOL and some third-party Spooler Print Processes.

2
Initial release of EMS support. Full documentation, as well as additional EMS events, will be provided in the future. At present, EMS events are generated when a connection to an AWAN cannot be made, when a connection is successfully made, and when an existing connection is lost. Standard EMS events are generated for process startup and shutdown and for backup related events; refer to the NonStop NBT (NetBIOS over TCP/IP) manual which shares many of the same events. Template and other standard EMS files are provided.

AWAN 3886 Software 217 – 22 Jan 2001

1
Support for the circuit timeout message sent by GAP A33. Formerly, AWAN 3886 would timeout a connection to a GAP process due to network failure after 330 seconds (5.5 minutes). If GAP was configured via KEEPALIVE to a shorter interval, this could result in ports which were in use at the time of the network failure remaining unavailable to the newly connected GAP process until the full 330 seconds had elapsed. Refer to command KEEPALIVE in this manual.

GAP Software A33 –22 January 2001

1
GAP now sends a circuit timeout message to the AWAN when contact is first established and again whenever the KEEPALIVE command is used. Refer to the command KEEPALIVE in this manual.

AWAN 3886 Software 218 – 05 Feb 2001

1
Setmode 231 P2 units changed to 0.01 seconds, range is now 1 to 25500 (0.01 seconds to 255.0 seconds). This will require changes to setmode or script for when setmode 231 P2 is nonzero. This will allow faster and more reliable half-duplex operation.

AWAN 3886 Software 219 – 14 March 2001

1
There were no ATAP software changes in release 219

AWAN 3886 Software 220 – 16 April 2001

1 GAP 6530 now supports setmode 225 to extend the DTR off time on control 12.

2 GAP 6530 Eliminate delays at session startup and shutdown in modem environments.

GAP Software A34 – 07 May 2001

1 GFT library H10 fixes possible I/O misrouted between ports when GAP is stopped and restarted but application keeps the GAP window open.

2 AWAN ip addresses (ADD SERVER) may now specify DNS names. Note: DNS name resolution can be slow and adversely affect all activity in a GAP process.

GAP Software A35 – 15 July 2001

1 GFT library H11 fixes inadvertant backup process stop/restart when cpu 0 fails.

2 Fix abend when DELETE WIN immediately follows STOP WIN with pending I/O.

AWAN 3886 Software 221 – 06 September 2001

1 For Port AWAN ATAP with type-ahead disabled (setmode 209,x,0), parity and framing errors received when no read is active will be ignored.

2 The maximum number of GAP connections to an AWAN is increased from 10 to 20.

AWAN 3886 Software 222 – 29 September 2001

1 Port AWAN ATAP & GAP Window type 6530; detect terminal-initiated IXF mode to avoid intermittent hanging IXF transfers

AWAN 3886 Software 223 – 01 October 2001

1 Port AWAN ATAP & GAP Window type 6530; detect host-initiated IXF mode to avoid intermittent hanging IXF transfers

2 Support for memory dump debugging commands.

GAP Software A36 – 02 October 2001

1 Support for memory dump debugging commands..

AWAN 3883/4/5 Firmware 046 – 10 December 2001

1
Port Type ATAP new setmode 233 to flush output queued during flow-control output is stopped and application program does Guardian CANCEL. This can prevent AWAN memory exhaustion when a device is flor-control output stopped and the application does many repeated write/cancel operations.

GAP Software A37 – 16 December 2001

1 Fix for “hanging” opener, possibly including a “handing” port, when a remote opener (running on a different Expand Node than the GAP process) stops during an Expand outage. GAP now properly terminates the open when the Expand outage is detected.

2 Server IPADDR and SEC^IPADDR no longer clobbered with 255.255.255.255 on certain TCP connection failures.

3 New LICENSE file mechanism. See “Configuring(Licensing) GAP”.

4 SYSCLASS is no longer used for licensing purposes.

GAP Software A38 – 24 January 2002

1 Support for large LICENSE files with multiple SYSNUM records.

2 Support for SYSNUM GENERIC.

3 New EMS messages to report on license validation, also displayed on home terminal.

4 LICENSE information added to INFO PROCESS command

AWAN 3886 Software 224 – 28 January 2002

1 Port AWAN ATAP flow control (CTS and XON) now works reliably.

2 GAP 6530 block mode reads completed with fecode 111 on break

3 Setmode 234 to flush type-ahead buffer on control 11 and/or half-duplex write

GAP Software A39 – 01 March 2002

1 GAPD30 (type 100 CISC/accelerated object) is again included in the DSV and includes the same software as GAP (type 700 RISC native mode object)

AWAN 3886 Software 225 – 06 March 2002

1 Setmode 202 fix incoming data to start at specified offset.

2 GAP 6530 block mode reads completed with fecode 111 on break

3 Setmode 234 to flush type-ahead buffer on control 11 and/or half-duplex write

AWAN 3886 Software 226 – 09 June 2002

1 New setmode 235 to simulate DCD on 3886 models.

2 New setmode 236 to return hardware & software versions

3 Setmoode 211 implemented for 3886

GAP Software A40 – 15 October 2002

1
Opens of a GAP window which are pending due to loss of contact between GAP and AWAN are now cleared when a Guardian CANCEL is received. Formerly GAP could slowly fill up with OPEN message buffers until an abend, usually due to “rm nobuf”.

AWAN 3886 Software 227 – 21 October 2002

1 New setmode 237 for setmode 38 compatibility with ATP6100.

2 GAP 6530 windows do not append ascii LF (hex 0a) to ITI mode writes when the write begins with ESC o (line 25).

AWAN 3886 Software 228 – 31 October 2002

1 New setmode 238 for WRITEREAD synchronization.

GAP Software A41 – 20 November 2002

1 On file system REPLY internal errors, GAP will now abend to create a ZZSAnnnn dump file for analysis. This can be overridden by the new REPLY^ERR^ABEND N command.

2 GAP will display an appropriate EMS warning message daily at 9AM if the GAP license has expired, the GAP license will expire within the next 32 days, or GAP is running in GENERIC mode which permits only tracing.

3 Note that GAPSFX is now a type 700 object file.

GAP Software A42 – 28 November 2002

1
When a port was disconnected by application close of the GAP window at the same time that the port was being closed by the AWAN (such as LOGOUT PORT), GAP would inadvertently reply an I/O request from some other port. This would result in lost or corrupted data flow and eventually to Reply Error 74.

AWAN 3886 Software 229 – 15 December 2002

1 After BREAK is detected on a port, additional BREAK errors are ignored for approximately one second.

GAP Software A43 - 12 February 2003

1 Fix for reply error 74.

AWAN 3886 Software 230 – 18 May 2003

1 Additional CTRACE records for modem signal changes

2 New setmode 239 for modem signal tests on ATAP ports

AWAN 3886 Software 231 – 27 May 2003

1 Setmode 239 enhancements for ATAP ports

2 Setmode 240 for CTRACE overflow

AWAN 3886 Software 232 – 30 May 2003

1
Setmode 239 enhancements for ATAP ports

GAP Software A44 – 09 June 2003

1 GFT library version H19 (general enhancements)

2 Support for automated start as a Kernel Persistent Process

3 LICENSE^CHECK and LICENSE^REFRESH (manual and automatic) features. See Configuring (Licensing) GAP

AWAN 3886 Software 233 – 16 June 2003

1
Setmode 241 for delay after DTR change

GAP Software A45 – 30 June 2003

1 ADD SCRIPT missing setmode P1 and P2 no longer default to zero. If P1 and/or P2 are omitted, the operation will be as defined for the specific setmode function.

2 NOTE: GAP A45 improperly displayed version/vproc as A44

GAP Software A46 – 07 July 2003

1 Port Type ATAP. Fix for a READ immediately followed by CANCEL. In some cases the cancellation was ignored, and some incoming data would be ignored instead of being returned to the next READ or WRITEREAD.

2 Correct version/vproc info.

AWAN 3886 Software 234 – 11 July 2003

1
Port Type ATAP. Setmode 242 for improved reporting of DSR drop.

AWAN 3886 Software 235 – never released

AWAN 3886 Software 236 – 13 September 2003

1
DNPG (3886 hardware manufacturer) release V2.6 for D708

GAP Software A47 – 14 September 2003

1 Support CONTROLBUF (only used by Gemini development lab)

2 Avoid abend on very long term license (only used by Gemini development)

AWAN 3886 Software 237 – 07 October 2003

1 Port Type ATAP. Improved modem signal handling.

2 CTRACE tracing reduce impact on live traffic and reduce number of discarded trace packets during peak activity.

GAP Software A48 – 28 May 2004

1 ADD SERVER command new parameter SRCPORT to specifiy a NonStop TCP/IP port number or range of numbers used by GAP when connecting to AWAN. This cooperates with network firewalls that require specific TCP/IP port numbers on the NonStop system.

2 Fix for “phantom” opens (show in LISTOPENS after application has stopped) which could occur in the rare case when an application has a backup process with a checkopen to $GAP, then closes the primary open before stopping the backup process. (Part of GFTLIB H22.)

3 New GAPCOM command VERIFYOPENS which will validate GAP internal list of application openers to ensure that the applications are still running. Any detected phantom opens are deleted and a summary is reported. (Part of GFTLIB H22.)

4 GAPCOM command LISTOPENS now displays the open table index for each application open as a number at the beginning of each line. LISTOPENS also allows an optional parameter which specifies the starting open table index, useful when LISTOPENS display is truncated on large configurations (uncommon for GAP users). (Part of GFTLIB H22.)

5 New GAPCOM command KILLOPEN <otx> to delete a specific open table entry. (Part of GFTLIB H22.

AWAN 3886 Software 238 – 14 October 2004

1 Port Type ATAP. ARC writereads no longer return invalid ARC response code hex 02 on asynch break occurring together with certain timing conditions.

2 Port Type ATAP. ARC writereads return ARC response code hex 04 on asynch break. Note that this fix is superceded by gem239.

AWAN 3886 Software 238 – 14 October 2004

1
Port Type ATAP. ARC writereads now return Guardian file error code 111 and ARC

AWAN 3886 Software 240 – 02 March 2005

1
Compatible with Access Server Manager (ASM) V3.1.

AWAN 3886 Software 241 – 07 July 2006

1 Supports setmode 243 which allows disable of BREAK by setmode 11,0 and setparam 3,0. Requires GAP A49.

GAP Software A49 – 17 July 2006

1 Setmode 11 and setparam 3 are now passed to AWAN.

2 GAPI type 800 object for Itanium

3 Uses latest NonStop Socketlib (G08AAQ and H01AAR)

4 GAP is now distributed in standard PAK format, not self-extracting, so UNPAK is needed.

AWAN 3886 Software 242 – 12 July 2007

1
ATAP ports: Asynch input received when no application read is active with setmode 209,x,0 (type-ahead disabled) is now discarded every second to avoid file error 175 (overrun) on streaming input when application reads were delayed .

@EOF

PAGE
11

_957139893.vsd

