
TDP - TCP/IP Direct Printing
User Guide

Revision date:

May 27, 2009

TDP software version:

A12

Gemini Communications Inc.
Rich Pope:
15N460 Settlers Grove Road

Hampshire, IL 60140 USA

Phone

847-464-5820

Fax

847-464-5823

Email

Rsp@geminic.com

Dave Cikra:
29120 N. 108th Street

Scottsdale, Arizona 85262 USA

Phone

480-513-6229

Fax

480-513-8747

Email

Dhc@geminic.com

web site:

http://www.geminic.com
Document History

Refer to the Release Notes at the end of this manual.

The current revision information is now shown on the front cover.

References

Information in this document is subject to change without notice and does not represent a commitment on the part of Gemini Communications Incorporated. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose without the express written permission of Gemini Communications Incorporated.

Copyright © 1996-1999 by Gemini Communications Incorporated. All rights reserved.

TANDEM, NSK, NonStop, GUARDIAN, TACL, and TMF are trademarks of Hewlett Packard Corp.

Chapter 1
- Introduction
7
Overview
7
Operational Overview
7
Flexible Deployment
8
Chapter 2
- Installation
9
Overview
9
DSV Contents
9
Distribution Via Internet
9
Licensing TDP
10
License Validation
10
Daily 9:00 AM License Expiration Check
11
LICENSE^REFRESH
11
Installing a new LICENSE File
11
Overview
13
Running TDP
13
Running TDP as a Kernel Persistent Process
13
TDP PARAM Usage
14
PARAM BACKUPCPU cpu
14
PARAM GFTCOM^OBJECT filename
14
PARAM GFTCOM^IN filename
14
PARAM GFTCOM^OUT filename
14
PARAM GFTCOM^PARAM <param>
15
PARAM POOL^SIZE number
15
PARAM SECURITY letter
15
PARAM TRACE^SIZE number
15
PARAM TRACE^FILE trace-file
16
Sample Startup Obey Files
16
Chapter 4
Commands
17
Overview
17
Running TDPCOM
17
TDPCOM Command Summary
19
TDPCOM Command Summary
19
ABORT WINDOW
21
ABORT WINDOW
21
ADD SCRIPT
21
ADD WINDOW
22
BACKUP / BACKUPCPU
23
COMMENT
25
CONNECT_TO
25
DEFAULT SCRIPT
25
DEFAULT TYPE
26
DELETE SCRIPT
26
DELETE WINDOW
26
EMS_TCP_ERR
27
EXIT
27
FC
27
HELP
28
INFO PROCESS
28
INFO SCRIPT
29
INFO WINDOW
29
LICENSE^MONITOR
30
LICENSE^REFRESH
30
LISTOPENS
30
OBEY
31
OPEN
31
PENDING^140
32
POOL
32
RETRY_4127
34
SAVEHOSTADDR
34
SECURITY
34
SHUTDOWN
35
SHUTDOWN_EOF_TO
35
START WINDOW
36
STATUS WINDOW
36
STOP WINDOW
37
TRACE
37
VERSION
38
Chapter 5
- ATAP API
39
Overview
39
Terminal Server Connect
39
Application Open
39
Write Operations
40
Writeread Operations
40
Read Operations
40
Interrupt Character Handling
42
Cancel Operations
43
Control and Setmode Operations
43
Deviceinfo Operations
43
Control 1 – Form Control
43
Control 11 - Wait for Carrier Detect
44
Control 12 - Drop Data Terminal Ready
44
Control 40 - flush type-ahead buffer.
44
Setmode 203 - First byte timeout
44
Setmode 204 - Inter-byte timeout
44
Setmode 205 - Total read timeout
44
Setmode 206 - Write timeout
45
Setmode 207 - Verify ATAP
45
Setmode 217 - Extended Interrupt Character Handling
45
Setmode 218 - Carriage Control Handling
46
Setmode 220 - Handling of unsupported setmode operations
46
Setmode 222 - ETX / ETB Character
47
Setmode 223 - Line Termination Character
47
Setmode 224 - Type Ahead Enable/Size
47
Standard ATP6100 Setmode functions
47
TDP compared to GAP
50
Conversion from CMI Configuration
50
Guardian File System Error Codes
51
Modem “AT” Commands
53
Chapter 6
- Printers
55
Overview
55
HP 55xx Series Printers
55
Microplex Print Servers (M205 etc)
55
Hewlet-Packard LaserJet with JetDirect
55
Hewlett-Packard External Print Servers
55
Chapter 7
- Troubleshooting
56
Overview
56
TDP cannot connect to printer
56
Unexpected incoming data in read buffer
56
File Error 12 on Open of $TDP.#PORTxx
56
Unexpected Results - Using ATAPD
56
Tracing
57
Chapter 8
- Release Notes
58
TDP A01 – 28 August 2001
58
TDP A02 – 18 June 2003
58
TDP A03 – 12 May 2004
58
TDP A04 – 22 February 2005
58
TDP A05 – 04 December 2005
58
TDP A06 – 11 January 2006
59
TDP A07 – 17 July 2006
59
TDP A08 – 28 November 2006
59
TDP A09 – 16 January 2007
59
TDP A10 – 21 January 2008
59
TDP A11 – 29 May 2008
59
TDP A12 – 27 May 2009
59

Chapter 1
- Introduction

Overview

Gemini TCP/IP Direct Printing software connects HP NSK applications to network printers via TCP/IP. TDP bypasses the Spooler to give continuous real-time access to printers required for applications such as logging and check printing.

TDP will work with any printer that supports “raw” TCP sockets. This includes:

Hewlett-Packard printers with internal JetDirect interfaces

Hewlett-Packard external print servers

Microplex external print servers

HP 552x family printers with internal Microplex interfaces

Terminal servers with “raw” TCP interfaces

TDP does not support:

 LPD1179

Telnet server interfaces

TDP provides a standard file system interface to NSK applications. Standard printer setmode functions 6, 7, and 27 are supported.

The TDP product will operate with all K-series, S-series, and Itanium HP NSK servers utilizing NSK releases D4x, G0x, and H0x. TDP uses the standard TCP/IP Socket Library to communicate with the remote terminal server.

Operational Overview

A sample TDP configuration is shown below in Figure 1-1.

[image: image1.wmf]Compaq NonStop Himalaya Server

Ethernet LAN

TCP/IP

TDP

Applications

TCP/IP

Port #3

#port01

#port02

#port03

Port #2

TCP/IP printer

TCP/IP printer

Port #1

Print Server

Parallel Printer

Figure 1-1. Sample TDP Configuration

Flexible Deployment

Each TDP process can support several hundred printers. Multiple TDP processes can be used for configuration convenience and for fault-tolerance purposes.

Chapter 2
- Installation

Overview

This section describes the installation considerations for the TDP product.

DSV Contents

Table 2-1. DSV Table of Contents

	Filename
	File Code
	Description

	TDPCHELP
	101
	Help text file in EDIT format

	TDPCOM
	100
	TDP command interpreter

	TDP
	700
	TDP version for D4x and G0x

	TDPI
	800
	TDP version for H0x

	GTRED
	100
	Diagnostic trace formatting program

	MANUAL
	0
	TDP User Guide in MSWord format

	STDPTMPL
	101
	Source for EMS templates

	STARTnn
	101
	Sample TACL startup obey files

	ZTDPDDL
	101
	DDL source for TDP EMS

	ZTDPTMPL
	839
	EMS template file

Distribution Via Internet

TDP can be downloaded from the Gemini web site, www.geminic.com. The file downloaded from the web site is compressed in ZIP format with a password. Gemini requires an executed TDP Demonstration Non-Disclosure Agreement prior to shipping the software for evaluation. The ZIP contains the following files:

	TDPFTP.BAT
	DOS batch file to upload TDPPAK

	TDPPAK
	PAK file containing all NSK host files for TDP.

	MANUAL.DOC
	This manual in WinWord 6 format

	README
	Text file with host upload instructions

The TDPSFX file should be binary transferred to the NSK host. TDPFTP.BAT can be run from a MS-DOS prompt or a DOS-Box:

Usage:

TDPFTP group.user password host-ip-address subvol
Example:

TDPFTP super.super Blast7 128.1.2.3 $system.TDP

Alternatively, use another FTP client or other file transfer such as IXF to perform the binary transfer. After file TDPPAK is on the NSK host, use the standard UNPAK utility to restore the files to subvol $SYSTEM.TDP:

UNPAK TDPPAK,*.*.*,LISTALL,VOL $SYSTEM.TDP,MYID

The DSV is now loaded with the same files as described under “Distribution on NSK Backup Tape”.

Licensing TDP

TDP requires a LICENSE file. This is an 101-edit format file in the same subvol as the TDP program object file. The file is read at TDP startup time (see the section Running TDP for details). Transfer the file provided by Gemini into the TDP subvol. To obtain a LICENSE file:

1 Send a signed TDP Demonstration Agreement or TDP License Agreement to Gemini. Authorized Gemini distributors may use different agreement forms.

2 From a TACL prompt on the NSK system where TDP will be run, run the SYSINFO utility. Provide the system serial number information exactly as it is displayed. If TDP will be run on multiple NSK systems, repeat this process for each system.

3 A LICENSE file, containing the system serial number(s) and an expiration date, will be provided, usually sent via email. Transfer this file, unchanged, to the TDP subvol using ascii file transfer mode.

License Validation

TDP validates the LICENSE file at startup time as follows:

1 No changes, deletions, or additions can be made to the file.

2 The file must be a 101-edit format file in the same subvol as the TDP program object file.

3 The system serial number of the NSK system where TDP is run must match one of the SYSNUM records in the LICENSE file.

4 The system date is compared against the EXPIRE record in the LICENSE file. The license expires at midnight (00:00 hours), thus TDP cannot be started on or after the indicated date.

If the LICENSE file is validated, TDP startup completes with the following message:

TDP License validated, expires <date>

If the EXPIRE date is less than 32 days away, an additional warning is sent:

TDP Warning: license expires in <nn> days

If the LICENSE file is not present, cannot be read, has been modified, does not contains a SYSNUM record matching the system serial number, or the EXPIRE date has been reached, then TDP will terminate in error after displaying:

TDP License Exception <s1>/<s2> File: <file> Reason: <reason>

Contact Gemini support with the above information.

The LICENSE file is only used at TDP startup time; once TDP validates the license, it will continue running without regard for the expiration date. A new LICENSE file can be put in place to be ready for the next TDP startup.

Daily 9:00 AM License Expiration Check

Every morning at 9:00 AM LCT, TDP checks the expiration date against the current date. If the license has already expired, or will expire within 32 days, an EMS message is displayed and an automatic LICENSE^REFRESH is performed.

LICENSE^REFRESH

TDP expiration can be extended by reading new LICENSE file that has been placed into the TDP subvol. This can occur automatically (see “Daily 9:00 AM” above) or manually (see TDPCOM command LICENSE^REFRESH).

1 – If the LICENSE file has a matching system serial number and has an expiration date newer than the original, then TDP will extend its operational expiration date. An EMS message to this effect is displayed.

2 – If the LICENSE file does not have a matching system serial number, or has an expiration date older that the original, or is otherwise unreadable, it is ignored.

3 – Subsequent INFO TDP commands will indicate that a LICENSE^REFRESH has been performed

Installing a new LICENSE File

Once a TDP process has successfully started with a valid expiration date, the process will never stop just because the expiration date has been reached. However, running with a current license file is important to avoid problems if the TDP process needs to be restarted for any reason. Furthermore, there will be a warning EMS message every morning at 9:00 AM if TDP is running with a license that has already expired or will expire within 32 days.

Contact Gemini, or your TDP distributor, for a new TDP LICENSE file. If you want to be extra careful, you can validate the new TDP LICENSE file without interfering with running TDP processes:

1 – Place the new LICENSE file into the TDP subvol. Alternatively, for extra precaution, FUP DUP the TDAP object file into a new test subvol and move the new LICENSE file into that subvol. TDP always reads the LICENSE file from the same subvol as the TDP object file.

2 – From a TACL prompt, run TDP with a generic process name and a special parameter:

RUN TDP / NAME / LICENSE^CHECK

3 – TDP will validate the LICENSE and display messages on the home terminal and on the EMS log.

4 – Regardless of the result of the validation, this TDP process will immediately stop. Messages to this effect are displayed on the home terminal and on EMS.

5 – If an alternative subvol was used in step 1, move the LICENSE file into the production subvol and repeat LICENSE^CHECK.

6 – Use TDPCOM LICENSE^REFRESH for all running TDP processes. If this step is omitted, LICENSE^REFRESH will be automatically done the next morning at 9:00 AM.

7 – Remember that TDP licenses are keyed to system serial number, so they LICENSE^CHECK tests must be run on the specific licensed system.

Chapter 3
- Running TDP

Overview

This section includes information about:

· Running TDP

· A description of the PARAMs used with TDP.

Running TDP

To start TDP, use the standard TACL RUN command.

1> LOGON group.user,password

2> CLEAR ALL

3> PARAM ...

4> RUN TDP / NAME $TDP , NOWAIT /

Once the TDP process is started, TDPCOM is used to configure servers and ATAP windows and to adjust parameters.

Alternatively, PARAM commands can be placed into an edit file which is referenced as the IN parameter:

1> LOGON group.user,password

2> CLEAR ALL

3> RUN tdp / NAME $tdap , IN <infile> , NOWAIT /

<infile> is an edit-101 file with PARAM commands in the same syntax as when used with TACL. Other lines besides PARAM commands may be present in <infile>, which is useful when PARAM GFTCOM^IN is used (see below). Any such lines are ignored during IN processing.

Running TDP as a Kernel Persistent Process

To start TDP, use the standard SCF commands to configure the Kernel:

ADD PROCESS

TDP

, NAME

$TDP1

, PROGRAM

$SYSTEM.TDP.TDP

, INFILE

$SYSTEM.TDP.TDP1KIN

, STARTMODE

SYSTEM -or- APPLICATION

, USERID

SUPER.SUPER

, AUTORESTART
10

, PRIMARYCPU
0

, BACKUPCPU

1

INFILE should specify a file, unique for each TDP process started via the Kernel, with PARAM commands and also regular GFTCOM commands such as ADD SERVER, ADD WINDOW, etc. In particular, INFILE should include at a minimum

PARAM GFTCOM^IN $SYSTEM.TDP.TDP1KIN

This will start a TDPCOM which will process the commands in TDP1KIN and feed them into $TDP1. Note that this is the same file as the INFILE specified to the Kernel above; the same file contains PARAM commands and GFTCOM commands. PARAM GFTCOM^OUT is optional..

TDP PARAM Usage

You can use the following PARAM statements with TDP. (Undefined PARAMs generate EMS events and are bypassed.)

PARAM BACKUPCPU cpu

specifies the backup CPU number. The default is NONE. See the TDPCOM BACKUP/BACKUPCPU command for a description of available options.

PARAM GFTCOM^OBJECT filename

specifies the name of the GFTCOM object file to be used with PARAM GFTCOM^IN. Default is file TDPCOM in the TDP subvol. This PARAM is rarely used.

PARAM GFTCOM^IN filename

Immediately upon startup, TDP will start TDPCOM (see PARAM GFTCOM^OBJECT) and pass <filename> as the IN parameter, PARAM GFTCOM^OUT as the OUT parameter, and PARAM GFTCOM^PARAM as the RUN parameter, I.E.

RUN gftcom^object / IN gftcom^in , OUT gftcom^out / gftcom^param

<filename> should contain all ADD SCRIPT, ADD WINDOW, BACKUPCPU, and any other commands needed to configure this TDP process. <filename> may also contain PARAM commands, allowing the same file to be specified for GFTCOM^IN and for INFILE to SCF.

Default is no automatic start of GFTCOM.

PARAM GFTCOM^OUT filename

specifies OUT file when PARAM GFTCOM^IN is used. Default is the home terminal..

PARAM GFTCOM^PARAM <param>

specifies RUN GFTCOM parameter field for use with PARAM GFTCOM^IN. Default is “*”. A “*” (asterisk) is replaced by the TDP process name. TDPCOM needs to know which TDP process, so use either the default “*” (highly recommended) or hard-code the proper TDP process name. An example to specify the backup cpu number:

PARAM GFTCOM^PARM *;BACKUPCPU ANY

PARAM POOL^SIZE number

specifies the size in words of the extended segment memory pool used for control tables and I/O buffers. The default is 1,000,000 words. number can specify a decimal number optionally followed by the letter K (kilowords), which multiplies by 1,024, or by the letter M (megawords), which multiplies by 1,048,576.

PARAM SECURITY letter

defines security access required for sensitive TDPCOM commands. Sensitive commands are defined as commands that alter the application environment. Non-sensitive commands are those that only report status information without changing anything in the application. The default is O. Allowed values are from the set NAGCOU. These letters assign access as follows:

N
Any local or remote user

A
Any local user

G
A group member or owner

C
A member of the owner’s community (local or remote user with the same

group ID as the owner)

O
The owner only

U
A member of the owner’s user class (local or remote user with the same

user ID as the owner)

PARAM TRACE^SIZE number

specifies the size in bytes of the trace file when PARAM TRACE^FILE is used. number can specify a decimal number optionally followed by the letter K (kilobytes), which multiplies by 1,024, or the letter M (megabytes), which multiplies by 1,048,576. The default is 100K. PARAM TRACE^SIZE should precede PARAM TRACE^FILE.

PARAM TRACE^FILE trace-file

starts a trace file immediately. The size is determined by PARAM TRACE^SIZE. This file is created if it does not already exist. The trace file must refer to a local disk file. PARAM TRACE^FILE should follow PARAM TRACE^SIZE.

Sample Startup Obey Files

The TDP distribution subvolume contains sample TACL obey files with names of the form STARTnn which may be used to start the TDP process.

Chapter 4
Commands

Overview

This section describes all of the TDP commands. It includes information about:

· Running TDPCOM, the system operator interface that enables configuration, status, and maintenance requests

· A list and description of each of the TDPCOM commands

Running TDPCOM

TDPCOM is the system operator interface to TDP. TDPCOM provides for configuration, status, and maintenance requests. You can store your TDPCOM commands in an EDIT format disk file or enter them conversationally. You can direct your output to a terminal, printer, disk file, or spooler. Standard OBEY and FC commands are provided. A built-in HELP command is used; you can easily change the HELP dictionary or extend it to conform to local requirements by modifying the supplied TDPCHELP EDIT file.

When TDPCOM is run, an implied OPEN $TDP command is issued prior to prompting for input.

To start TDPCOM, use the standard TACL RUN command, as shown in the following examples:

1> RUN TDPcom $TDP

2> TDPcom $TDP1 ; info win * ; e

3> TDPcom / IN TDPin4 , OUT $s /

4> TDPcom $TDP1 ; TRACE $system.TDP.trace3,1M ; e

Following is a sample TDP startup:

1> CLEAR ALL

2> RUN TDP / NOWAIT , NAME $TDP /

3> TDPcom $TDP;&

 ADD WIN #a,SUBNET $ztc0,IPADDR 129.23.4.5; &

 INFO win *; E

TDPCOM Command Summary

Table 4-1 summarizes the TDPCOM commands:

Table 4-1. TDPCOM Command Summary

	Command
	Function

	ABORT
	Aborts a WINDOW

	ADD
	Adds a SCRIPT or WINDOW

	BACKUP[CPU]
	Creates a TDP backup process

	COMMENT
	Allows insertion of comments into TDPCOM input files

	CONNECT_TO
	Timeout OPEN when connect does not complete

	DEFAULT
	Establishes a default TYPE or SCRIPT

	DELETE
	Removes a WINDOW or SCRIPT

	EMS_TCP_ERR
	Suppress EMS events on TCP network errors

	EXIT (E)
	Terminates TDPCOM

	FC
	Invokes the Tandem Fix Command

	HELP
	Provides online help documentation to TDPCOM users

	INFO
	Displays configuration for TDP or for PROCESS, WINDOW, or SCRIPT objects

	LICENSE^MONITOR
	Force an immediate “9:00 AM” expiration check

	LICENSE^REFRESH
	Reads a new LICENSE file

	LISTOPENS
	Displays processes which have a TDP process open

	OBEY (O)
	Process commands from an EDIT format disk file

	OPEN
	Directs TDPCOM to a specific TDP process

	PENDING^140
	Guarantees file error code 140 on session disconnect

	POOL
	Displays buffer pool usage statistics

	RETRY_4127
	Automatic retry of connect error 4127

	SECURITY
	Sets TDP access security

	SHUTDOWN
	Terminates TDP

	SHUTDOWN_EOF_TO
	Times out remote failure to complete disconnect

	START
	Starts a WINDOW object

	STATUS
	Displays current WINDOW status

	STOP
	Stops a WINDOW

	VERSION
	Displays the TDP process revision number and date

ABORT WINDOW

ABORT WINDOW immediately terminates a window session. This command is rarely used.

ABORT WIN[DOW] { window-name | * }

ABORT WIN[DOW]

WIN and WINDOW are equivalent.

window-name
specifies a window to be aborted.

*

aborts all configured windows.

ADD SCRIPT

ADD SCRIPT defines a script to the open TDP process. The script is comprised of one or more SETMODE command definitions which are executed when a window session is established.

ADD SCRIPT script-name entry [entry]
script-name
defines the script uniquely: starting with a letter, then optionally followed by letters or numbers up to 12 characters maximum. The server name is referenced in the ADD WINDOW and DEFAULT SCRIPT commands.
entry

is preceded by one or spaces and has the format:

type [, parm1 [, parm2]]

where

 type
is the SETMODE type.

parm1
is SETMODE parameter 1, default 0.
parm2
is SETMODE parameter 2, default 0.

Values may be in decimal or in hex preceded by “%h”.

Following is an example script s1 to set baud rate to 115,200 and the interrupt characters to ctrl-H , ctrl-C, ctrl-Y, and ctrl-M:

add script s1 22,35 9,%h0818,%h190d

If a script referenced in an ADD WINDOW command is defined when the window is opened, the script file entries are processed as Setmode commands in the order specified.

Note that the script names specified in DEFAULT SCRIPT and ADD WINDOW commands need not be defined by ADD SCRIPT until the window is opened. If the script configured for a window is unavailable at window open time, the script feature is bypassed.

ADD WINDOW

ADD WINDOW creates a static window and associates it with a server.

ADD WIN[DOW] window-name
 ,PORT

port-number

 ,SUBNET

tcp-name
 ,IPADDR

ip-address

 [,SCRIPT

script-name]

 [,TYPE

ATAP

]

 [,DEVTYPE
(type , subtype)]

 [,WRITE^DEPTH
num-writesh

]

 [,RECLEN

record-length
]

ADD WIN[DOW]

WIN and WINDOW are equivalent.

window-name

specifies a window to be added. This field is required.

The window name follows window-name rules: a pound sign (#) followed by a letter, then 1 to 6 letters or digits.

The window name qualifies the file name used in Tandem applications to open TDP files (for example, $TDP.#WIN1).

PORT port-number

consists of a TCP port number as defined by printer or print server. Typically ports 4400 and 9100 are used. Refer to the chapter Printer Configuration.

IPADDR ip-address
The IP address of the terminal server in dotted form (e.g 128.1.2.234) or in DNS-name form. This field is required.

SUBNET tcp-name
refers to a TCP/IP driver process, e.g. $ZTC0. This field is required.

SCRIPT script-name
If the server field is omitted, the DEFAULT SCRIPT, if any, is used for this window. If DEFAULT SCRIPT *NONE* is specified, and the script field is omitted in the ADD WINDOW command, no script functions will be performed when the window establishes a session. See the ADD SCRIPT command description above for more information on the script feature.

SUBNET subnet-name
Specifies a TCP/IP process name. This field is required.

TYPE ATAP

specifies the session type as ATAP for specialized asynchronous functions. No other type is defined at present.

 DEVTYPE (type , subtype)

specifies the device type and device subtype that the TDP will return in response to an application DEVICEINFO call. Values for type and subtype may range from 0 to 63. The default is (6, 0).

RECLEN record-length
specifies the record length the TDP will return in response to an application DEVICEINFO call. Values from 0 to 32767 are permitted. The default is 80.

WRITE-DEPTH num-writes
Specifies the number of write operations (print lines) which will be buffered within TDP for a window. If the remote device is not accepting data (for example when it is offline, out of paper, or simply not printing as fast as data is being generated by the NonStop application), TDP still accepts WRITE requests and does REPLY until the limit is reached, then TDP will not REPLY to the application WRITE request until the device once again accepts the outbound data. Without this limit, TDP could continue to buffer application print data until the TDP memory pool was exhausted. Default for num-writes is 10, range is 1-100. TDP versions A05 and earlier has no WRITE-DEPTH limit and would accept application WRITE data until memory was full.

BACKUP / BACKUPCPU

BACKUPCPU controls the application backup process. BACKUP is a synonym for BACKUPCPU.

BACKUPCPU cpu

cpu can be one of the following:

?

displays the current setting, along with the current backup status.

NONE

stops a backup process if one is already running. No new backup processes are created.

number
specifies a number in the range 0 through 15 inclusive. The application will use the specified CPU for its backup process. If a backup process is already running, it is stopped. A new backup process is created in the specified CPU.

BUDDY

toggles the low-order bit of the primary CPU number to determine the backup CPU number. This pairs CPUs for backup purposes in even-odd groups (0 to 1, 2 to 3, ... 14 to 15). This avoids the problem of configuring a specific CPU number.

If a backup process is already running, it is stopped. A new backup process is created in the specified CPU.

ANY

uses any available CPU for the backup process. The first attempt is with the buddy CPU; if that fails, other CPUs are then used starting with CPU numbers closest to the primary until a backup is successfully started. This method assures that a backup will be created in all cases where any two CPUs are available. If a backup process is already running, it is stopped. A new backup process is created in the appropriate CPU.

COMMENT

COMMENT allows insertion of commentary text into TDPCOM input files.

COMMENT text
text
specifies the comments to be inserted into TDPCOM input files. The text can include anything except a semicolon.

CONNECT_TO

CONNECT_TO controls timeout of file system OPEN requests from applications in the event that the remote device does not respond to TCP connect requests. Failure to respond is usually caused by the device being offline, a network failure, or an incorrect IP address.

This command is supported in A12 and later releases.

CONNECT_TO timeout
timeout
specifies the time, in seconds, before an OPEN request will be rejected file file error code 66. The default is 180 (3 minutes) for compatibility with A11 and earlier releases. The range is 0 to 180; zero (0) disables the timeout and the connect will only fail when the TCP/IP timeout occurs.

The current value of this parameter is displayed by INFO TDP.

DEFAULT SCRIPT

DEFAULT SCRIPT specifies a script name to be used as a default for ADD WINDOW commands. DEFAULT SCRIPT also applies to automatically added dynamic windows.

To display the current setting of this parameter, use the INFO PROCESS command.

DEFAULT SCRIPT { script-name | *NONE* }

script-name
specifies the script to be used for subsequent ADD WINDOW commands that do not specify a script parameter.

NONE

disables the default script name.

DEFAULT TYPE

DEFAULT TYPE specifies a window type to be used as a default for ADD WINDOW commands. DEFAULT TYPE also applies to automatically added dynamic windows.

To display the current setting of this parameter, use the INFO PROCESS command.

DEFAULT TYPE ATAP

ATAP

specifies the ATAP window type which requires access by applications using the ATAP API described below.

DELETE SCRIPT

DELETE SCRIPT removes a previously added script from the configuration.

DELETE SCRIPT { script-name | * }

script-name
specifies a script to be deleted.

*

specifies all scripts are to be deleted.

DELETE WINDOW

DELETE WINDOW removes a previously added window from the configuration.

DELETE WIN[DOW] window-name
DELETE WIN[DOW]

WIN and WINDOW are equivalent.

window-name

spefies a window to be deleted

EMS_TCP_ERR

EMS_TCP_ERR controls generation of EMS events when a TCP/IP error occurs.

This command is supported in A12 and later releases.

EMS_TCP_ERR

Y | N

Y
enables generation of EMS events when a session is terminated due to a network error. This is compatible with A11 and earlier releases.

N
suppresses EMS events.

The current value of this parameter is displayed by INFO TDP.

EXIT

EXIT stops TDPCOM. This is the normal method of terminating an TDPCOM session. TDP is not affected. There are several forms of the EXIT command:

EXIT

E

control Y

eof on disc or process IN file

eof

in an OBEY file, returns to the previous OBEY file or IN file, and does not terminate TDPCOM.

FC

FC provides a typical FC facility; see Tandem TACL or EDIT documentation for a full description.

Like the EDIT product’s implementation, TDPCOM allows FC to be combined with other commands on a line. When an FC command is combined in this manner, it takes effect after all other commands on the line are processed; then the FC applies to the entire line, including the FC itself.

FC commands are not allowed in OBEY files, or when the IN file is not the same as the OUT file.

FC

FC

repeats the preceding command.

HELP

HELP provides online documentation to TDPCOM users.

The HELP file, named TDPCHELP, is located in the same volume and subvolume as the TDPCOM program object file. The file is in standard Tandem EDIT file format, with

lines of text formatted according to certain rules. These rules are explained in comment lines within the TDPCHELP file itself; list this file with EDIT or FUP for more documentation.

HELP [ALL]

 [command]

HELP

displays a summary of the HELP file.

HELP ALL

displays all HELP information.

HELP command
displays all HELP file information for the specified command.

INFO PROCESS

INFO PROCESS displays the setting of global parameters.

INFO PROCESS

INFO PROCESS

shows the current settings for:

· SAVEHOSTADDR

· DEFAULT SCRIPT

· DEFAULT TYPE

· PENDING^140

INFO SCRIPT

INFO SCRIPT displays the contents of a script object or the contents of all configured script objects.

INFO SCRIPT { script-name | * }

script-name
specifies the script of interest.

*

specifies all configured scripts.

INFO WINDOW

INFO WINDOW displays static configuration information about a specified window or all configured windows. This information includes:

· The window name

· The subnet name and IP address. If the address is symbolic, then an indication that it is currently unresolved or the resulved address.

· The TCP port number

· The window type

· The associated startup script, if any.

· The device type, subtype, and record length

INFO WIN[DOW] { window-name | * }

INFO WIN[DOW]

WIN and WINDOW are equivalent.

window-name
specifies the window name of interest.

*

specifies all configured windows.

LICENSE^MONITOR

LICENSE^MONITOR forces an immediate “9:00 AM” license expiration check. If the license is expired, or will expire within 32 days, an EMS message is displayed and an attempt is made to automatically refresh the license.

LICENSE^MONITOR

LICENSE^REFRESH

LICENSE^REFRESH rereads the LICENSE file. If the LICENSE file is valid and specifies a newer expiration date than the running TDP process, the expiration date will be extended. EMS messages will be displayed.

LICENSE^REFRESH

LISTOPENS

LISTOPENS displays all applications that have TDP open.

LISTOPENS

LISTOPENS

displays one line for each OPEN of the application by another process.

The following three example output lines are folded due to printer limitations:

1. G083I process.term [cpu,pin] fnum userid programfile

 home [backup]

2. $TCP1.#W742 1,47 fn=6 id=20,33 $SYSTEM.SYSTEM.PATHTCP

 $TERM4 bak=2,52 fn=6

3. \CENTDIV.01,050.#COMMAND.COMMAND fn=3 id=255,255

 $SYSTEM.SYSTEM.TDPCOM $OSP

These three example output lines represent the following:

1) Title line

2) Indicates that:

· The named process $TCP1 (cpu,pin=1,47) has opened the application with a terminal name of #W742 as file number 6

· $TCP1’s process access ID is group,user=20,33

· $TCP1’s object program file name is $SYSTEM.SYSTEM.PATHTCP

· $TCP1’s home terminal is $TERM4

· $TCP1’s backup process (cpu,pin=2,52) has checkopened the application with file number 6

3) Indicates that:

· The unnamed process running on node \CENTDIV with cpu,pin=1,50 has opened the application with terminal name #COMMAND.COMMAND as file number 3

· The #COMMAND.COMMAND terminal name indicates an TDPCOM requester

· The program is running under group,user=255,255 (SUPER.SUPER) from object program file name $SYSTEM.SYSTEM.TDPCOM with home terminal

$OSP

OBEY

OBEY processes TDPCOM commands from an EDIT format file.

OBEY edit-file-name
edit-file-name

specifies the EDIT file in which the commands are listed. Commands can be nested up to six levels deep.

OPEN

OPEN opens the specified TDP process for subsequent commands.

OPEN TDP-process-name
TDP-process-name
specifies the process to be opened. If another process is already open, that process is closed.

If the OPEN fails, all TDPCOM commands requiring an application are rejected until a successful OPEN is completed.

The version command is automatically performed after every OPEN command.

Examples:

OPEN $TDP

OPEN \THERE.$TDP4

PENDING^140

PENDING^140 controls the guaranteed return of at least one file error code 140 (modem error) to each opener of a window when a disconnect occurs.

This only concerns openers of windows that are disconnected and automatically reconnected. A disconnect occurs when the sessio is terminated by the terminal server.

To display the current setting of this parameter, use the INFO PROCESS command.

PENDING^140 { Y | N }

Y | N

defaults to Y. When set to Y, if an opener of a window has no active I/O requests pending at the time of a disconnect, then that open will be marked as "pending^140". If the opener issues its next I/O request after the automatic reconnect of the window, that I/O request from the application will be rejected with file error 140, and "pending^140" state will be cleared for that opener.

This guarantees that the application will be notified of a disconnect even if no I/O requests were active at the time of disconnect. This might occur if the application were suspended or busy between terminal I/O.

If one or more I/O requests were active for the opener at the time of disconnect, then those I/O request(s) will be completed with file error 140 and "pending^140" state is not set.

The above applies separately for each opener of the window; every single file system open of the window has "pending^140" independently handled according to the above rule.

When set to N, operation is compatible with TDP release A16 and earlier. Any I/O requests active at the time of disconnect are completed with file error code 140, and an opener that has no I/O requests active at the time of disconnect would not be notified of the disconnect.

Note that the automatic reconnect of a window is delayed for 5 seconds after disconnect to avoid thrashing. Any I/O request received during this time will be completed with file error 140 regardless of the setting of PENDING^140.

POOL

POOL verifies the integrity of the entire buffer pool and provides useful information for tuning PARAM POOL^SIZE.

POOL

TOTAL SIZE

shows word size of pool.

IN USE

shows words currently in use in the user buffer area.

HIGH

shows the highest value of IN USE since process startup or the most recent backup takeover.

GETS

shows total number of buffer allocation requests.

PUTS

shows total number of buffer releases.

REJECTS

shows the number of requests that failed due to pool exhaustion or fragmentation.

TRIMS

shows the number of trims (where a large buffer is allocated and the unneeded trailing portion is released while the front part is still used).

BUFS IN USE

shows number of buffers allocated, not yet released. HIGH specifies the highest value of BUFS IN USE.

$RECEIVE msgs

shows total user data and system messages on $RECEIVE.

BYTES RCVD

shows total bytes read on $RECEIVE.

BYTES REPLIED

shows total bytes replied to $RECEIVE.

RETRY_4127

RETRY_4127 enables automatic retry of connect error 4127.

This command is supported in A12 and later releases.

RETRY_4127

retry

retry
species the number of retry attempts for connect error 4127. Error 4127 generally occurs when the remote device is still busy cleaning up after a previous session and is not yet ready to accept a new session on the same port number. This can occur when the NonStop application does CONTROL 12 immediately followed by CONTROL 11, or CLOSE immediately followed by OPEN.

If retry is 0 (zero, the default), no retries are performed. Error 4127 results in immediate reply to the application OPEN with error code 66. This is compatible with A11 and earlier releases. If retry is 1-9, TDP will wait one second then repeat the connect request. If error 4127 occurs again, the request is repeated up to retry times or until the connect completes successfully. If the error persists, the open is rejected with file error code 66.

The current value of this parameter is displayed by INFO TDP.

SAVEHOSTADDR

SAVEHOSTADDR controls how often symbolic IPADDR are resolved using gethostname().

To display the current setting of this parameter, use the INFO PROCESS command.

SAVEHOSTADDR { Y | N }

N (default) resolves symbolic hostnames on every session (application open). This ensures that the current DNS setting is used, especially important if DHCP is used and printer addresses can change.

Y is used to avoid the overhead of gethostname() calls. Once a name is resolved to a numeric IP address, the address is saved for future sessions. If a connect attempt fails, the name is marked as unresolved, and a subsequent open will repeat the resolution. Y is not recommended if addresses are dynamic.

SECURITY

SECURITY displays and modifies the application’s security setting. This setting is initially established by the PARAM SECURITY command, with a default of O.

SECURITY [letter]

l

If the parameter is omitted the current setting is displayed. The value O is the default.

letter
sets the security to the specified letter, which must be from the set NACGUO with standard Tandem file security interpretation. These letters assign access as follows:

N
Any local or remote user

A

Any local user

G
A group member or owner

C
A member of the owner’s community (local or remote user with

the same group ID as the owner)

O
The owner only

U
A member of the owner’s user class (local or remote user with

the same user ID as the owner)

The SECURITY letter controls access to sensitive commands by TDPCOM users. Sensitive commands are defined as commands that alter the TDP configuration or operation. Sensitive commands can only be performed by TDPCOM users with a user ID matching the SECURITY setting. Non-sensitive commands, such as STATUS, INFO, and LISTOPENS, can be performed by any user ID.

SHUTDOWN

SHUTDOWN initiates an immediate TDP process termination. All active sessions are terminated. There are no parameters.

SHUTDOWN

You can also use the TACL STOP $process command.

SHUTDOWN_EOF_TO

SHUTDOWN_EOF_TO allows a timeout for session termination. TDP normally terminates a session (as requested by application CONTROL 12 or CLOSE) by performing socket shutdown, which sends a TCP FIN packet, then performing socket recv until zero bytes are returned (which occurs when the remote sends a TCP FIN packet back). It is possible for the remote application to leave the session hanging and never send a FIN packet. SHUTDOWN_EOF_TO recovers from this.

This command is supported in A12 and later releases.

SHUTDOWN_EOF_TO

timeout

timeout
species the time in seconds (1-60) to wait for the remote to complete the session disconnect. Default is 60 (one minute).

The current value of this parameter is displayed by INFO TDP.

START WINDOW

START WINDOW activates a window. START WINDOW is only needed after a STOP WINDOW or ABORT WINDOW.

START WIN[DOW] { window-name | * }

START WIN[DOW]

WIN and WINDOW are equivalent.

window-name
specifies the window to be started.

*

indicates that all configured windows are to be started.

STATUS WINDOW

STATUS WINDOW displays the status of a specified window or for all configured windows. The following information is displayed for each window:

· STOPPED: Requires START WINDOW to restart

· STARTED: Waiting for an application and/or a remote workstation

· IN SESSION: Means a session is in place.

STATUS WIN[DOW] { window-name | * }

STATUS WIN[DOW]

WIN and WINDOW are equivalent.

window-name
specifies the name of the window to be displayed.

*

displays status for all configured windows.

STOP WINDOW

STOP WINDOW immediately terminates the specified window or all active windows. This command is rarely used.

STOP WIN[DOW] { window-name | * }

STOP WIN[DOW]

WIN and WINDOW are equivalent.

window-name
specifies the name of the window to be stopped.

*

terminates all active windows.

TRACE

TRACE controls program tracing. The TDP trace is implemented via an extended data segment (edseg) that is associated with a user-specified disk file. TDP creates trace entries by direct memory access to the edseg. When the trace is stopped, or if TDP stops for any reason, the Tandem NonStop system flushes all remaining information from the edseg to the disk file.

You can control the trace file size. When the end of the trace file is reached, it wraps around back to the beginning, overwriting the oldest record in the file. The file can wrap repeatedly, storing the last size bytes of trace data. The combination of fast trace writes and the wraparound storage lets you run the trace continuously to catch intermittent problems. Simply set the trace file size to a large enough value to ensure that you have enough time after detection of the problem to stop the trace without losing any information.

TRACE { ? | OFF | RESET | [ON] filename [,size] }

?

displays the current status and setting of the trace file and all parameters.

OFF

stops the trace.

RESET

resets the trace file pointers, effectively restarting the trace, but without the overhead of stopping and starting the trace again.

ON filename [,size]

starts a trace on the specified unstructured disk file.

filename should be fully qualified; if it is not qualified, the default volume and subvolume in effect at the time the TDP application was started are used, not the defaults from the TDPCOM startup. If the file name does NOT begin with $ or \, the keyword ON is required.

A file of the specified size will be created. If a trace is already open, it is first closed. The trace file can specify the same name as an already active trace file. In that case, the trace file is rewritten. The TRACE RESET command is more efficient for this purpose.

size

determines the byte length of the trace file. The number can be followed by the letter K (kilobytes) which multiplies by 1,024, or the letter M (megabytes) which multiplies by 1,048,576. The default is 100K. The minimum is 12K and the maximum is 25M.

VERSION

VERSION displays the name, revision number, and revision date of TDP. There are no parameters.

VERSION

Chapter 5
- ATAP API

Overview

This chapter discusses the TDP API for the Advanced Tandem Asynchronous protocol (ATAP) . This API is based upon the Tandem ATP6100 API for the 6100 series communications controllers. Where possible the ATAP API is compatible with ATP6100 with extensions added for addition function. The ATAP API within TDP is modeled after the ATAP API of Gemini GAP software.

For TDP applications will involve only printers, only the SETMODE information of this chapter will be of interest.

Terminal Server Connect

TDP automatically establishes a TCP session with the remote terminal server configured by the Add Window command when the first application open is received for a TDP window. TDP closes the TCP session after the last remaining application open to the TDP window is closed, or when a Stop Window or Abort Window command is performed.

Application Open

TDP distinguishes between the first application open and any subsequent application open. Generally, applications will only perform a single file system open (Guardian OPEN or FILEOPEN_) to a TDP window, but multiple simultaneous opens are permitted from the same application process or from different processes. Applications may also open a TDP window in exclusive mode preventing access by any other application for the duration of the open.

Application open requests are always completed immediately unless the Window is not defined (file error 11), Stopped (file error 66), or an exclusive use conflict exists (file error 12).

When there are no openers for a window, and a “first” open is received, TDP first initializes setmode settings. Setmode settings are initialized by first setting all values to defaults, then applying any setmodes specified by the SCRIPT associated with the window. Next, a TCP connect to the terminal server port defined for the window is attempted. If the attempt fails, it is then periodically retried automatically until successful or until all openers close the window or the window is stopped.

Action at the terminal server upon session connect varies. Some terminal servers raise DTR and RTS signals only when a session is connected. Generally, no output banner messages are sent by the terminal server.

If there are multiple concurrent application opens, then no action is taken on application close as long as at least one open remains. When the last remaining application open for a Window closes, TDP closes the TCP session. Sessions can also be terminated by:

Control 12 from the application

TDPCOM Abort Window and Stop Window command

By the terminal server “Logout Port” or equivalent

By the terminal server when DCD or DSR drops.

Terminal server action on session termination varies, but generally DTR and RTS signals are cleared.

Write Operations

If the terminal is in break mode, and the requesting application does not have break access, file error 110 is returned.

If the overrun flag is set, return file error 175 and clear overrun.

If Setmode 6 P1.<15>=1 (default), append LF CR.

If none of the above is true, start sending the data. If Setmode 206 write timeout expires, return file error 174. If no errors occur, return file error 0. If break is received, the write completes with file error 111.

Multiple simultaneous writes are permitted, being processed in the order received.

Writeread Operations

If the terminal is in break mode, and the requesting application does not have break access, file error 110 is returned.

A writeread reqeust with zero read count is treated like a write , regardless of the write count. A writeread request with a zero write count and z non-zero read count is treated like a read. A writeread request with non-zero read count and non-zero write count is treated as follows:

The write portion of a writeread request is handled as described above for write operations, except that no CR LF is appended regardless of Setmode 6 setting. The read portion is handled as described below for read operations. Performing a writeread request while read requests are pending is of questionable value, since incoming data will be used to satisfy the pending read requests first.

Read Operations

If the terminal is in break mode, and the requesting application does not have break access, file error 110 is returned.

Read and write timeouts apply if Setmode 203-207 are set non-zero.

If the overrun flag is set, any data in the typeahead buffer is used to complete the Read. If the typeahead buffer contains more data than the maximum read count, the Read is completed with file error 0. If all of the data does fit, then file error 175 is returned, and overrun is cleared.

Otherwise, start receiving data. Read timeouts specified by Setmode 203, 204, and 205 apply.

If the Read buffer is filled (as defined by the maximum read count), the Read is completed with file error 0.

If break is received, the Read is completed with file error 111.

While receiving data, the interrupt characters are interpreted, unless Setmode 13 is in effect as described below. The defaults are carriage return for line-end, control-Y for line-eof, backspace for char erase, and control-X for line erase. These can be modified via Setmode 9, 217, and 223. If an interrupt character is set to zero, its function is disabled. Echo can be disabled by setmode 20; if not disabled, all input characters are echoed as described below.

Table 5-1. Read Action Matrix

	Input Character
	Action

	Special line termination character when SETMODE 38 P1=0
	

	Special line termination character when SETMODE 38 P1=1
	Character is not placed into the buffer.

Nothing is echoed.

Read completes with file error 0.

	Line Term (default CR but may be modified by Setmode 223 or Setmode 217)
	Character is placed into the buffer.

Nothing is echoed.

Read completes with file error 0.

	Line end (Only if defined by Setmode 9 or setmode 217)
	Character is not placed into the buffer.

CR and LF are echoed for read but not for writeread (see also SETMODE 7).

Read completes with file error 0.

	Line eof
	Character is added into the buffer.

Character is echoed

Read completes with file error 0.

	Line erase
	Character is not placed into the buffer.

“EOF!”, CR and LF are echoed.

Read completes with file error 1.

	Character erase
	Any data in the read buffer is erased.

“@”, CR and LF are echoed.

Read operation continues.

	Any other character data
	Delete last character in buffer, if any.

Backspace, “ “ and backspace are echoed unless the buffer was empty.

Read operation continues.

	
	Character is placed into the buffer.

Echo the character

If the buffer is full, complete read with file error 0.

If the buffer is not full, the read operation continues.

All processing of input characters, including echo, occurs during read (or writeread) processing, which, due to typeahead, can be some amount of time after they were first received. In the typical situation where the host displays a prompt and echoes the keyboard response, this results in a “natural” echo of the input data.

When Setmode 13,1 or Setmode 13,3 is in effect, the above rules for interrupt characters and echo still apply; however, Setmode 13,1/3 is usually accompanied by Setmode 20,0 to disable echo, Setmode 14,0 to disable interrupt character termination, and Setmode 9. When Setmode 13,1/3 is in effect, an ascii ETX (0x03) is always detected before checking for interrupt characters; once an ETX is detected, then the next character (for Setmode 13,1) or the next two characters (for Setmode 13,3) also bypass interrupt character processing. The read operation completes with file error 0 and with the data buffer including the ETX and the single character (Setmode 13,1) or the two characters (Setmode 13,3) following the ETX. There is no way to configure the “ETX” characters; it is always fixed at ascii ETX (0x03).

If a read timeout occurs, the Read completes with file error 171, 172, or 173.

Multiple simultaneous reads are permitted, being processed in the order received. Since ATAP has a configurable type-ahead buffer, no data will be lost even with a single read at a time as long as the applications performs another read before the type-ahead buffer fills. Posting more than 2 reads will result in little performance improvement and might even result in slight performance degradation.

Interrupt Character Handling

TDP maintains a table of 256 action codes for each window, one for each possible input byte. These action codes control input character processing, for read operations and the read portion of writeread operations. The following table lists action codes and their handling. For all cases, no echo is made if setmode 20,0 is in effect.

Table 5-2. Interrupt Character Action Codes

	Action Code
	Interrupt Action Description

	0
	Normal data. The input byte is echoed and is added to the read response. If the response buffer is filled, the read is completed with fecode 0

	1
	Backspace. If the response buffer is empty, no action is taken and the input byte is essentially ignored. Otherwise backspace, space, backspace (08 20 08) is echoed, regardless of which character this action is defined for, and the last byte in the read response is deleted

	2
	Line erase. "@" cr lf (40 0d 0a) is echoed, and any data in the read response buffer is cleared.

	3
	Eof. "EOF!" cr lf (45 4f 46 0d 0a) is echoed, any data already in the response buffer is discarded, and the read is completed with fecode 1.

	4
	Enter. For writeread, no echo is done; for read, if setmode 7,1 then cr lf (0d 0a) is echoed, else only cr (0d) is echoed. Note that, if anything is echoed, cr (0d) is used, not the input byte itself. The read is completed with fecode 0 along with any data in the response buffer. The enter character itself is not included in the response.

	5
	Termination. The input byte is echoed and is added to the read response, and the read is completed with fecode 0 along with any data in the response buffer. The termination character is included in the response.

Cancel Operations

Guardian cancel may function somewhat differently than ATP6100:

· If a read, write, or writeread has not been yet been processed, it is discarded.

· If a read or writeread has accumulated some data, that data will be discarded.

· In general, write (or the write portion of writeread) data is immediately transferred to the TCP process, and is thus beyond the effect of a cancel.

Guardian cancel may be used to stop Control 11 operations.

Control and Setmode Operations

Control and Setmode operations are processed and completed as soon as they are received. The only exception is Control 11 when waiting for a new session connection.

Any Setmode calls for Setmodes not specifically discussed below will be replied to with a file error 2 - unsupported operation.

Deviceinfo Operations

TDP responds to Deviceinfo calls as shown in Table 5-2 below.

Table 5-3. Deviceinfo Default Responses

	Deviceinfo Filename Parameter
	Device Type
	Device Subtype
	Record Length

	$TDP
	53
	0
	0

	$TDP.#WIN01 for TYPE ATAP
	6
	0
	80

	$TDP.#WIN01 for TYPE 6530
	6
	4
	80

The default values returned for a window may be overridden by specifying the DEVTYPE and/or the RECLEN parameters on the ADD WINDOW command.

Control 1 – Form Control

Parameter 2 determines the output:

P2 = 0, P2 omitted, or P2 > 79

Generate one form feed (hex 0c)

1 <= P2 <= 15

Output carriage return, line feed (hex 0d 0a)

P2 = 16

Generate nothing

17 <= P2 <= 79

Generate (P2 – 16) sequences of carriage return, line feed (hex 0d 0a). This P2=17 generate one blank line, P2=18 two lines, … P2=79 65 lines.

Interpretation of Control1 is not affected by setmode 6, 7, or 27.
.

Control 11 - Wait for Carrier Detect

Control 11 completes immediately is a session is already connected to the remote terminal server, and is delayed if a session is not active.

Control 11 has no affect on DTR; handling of DTR and other signals varies by terminal server.

Control 12 - Drop Data Terminal Ready

Control 12 always terminates an active current session

Control 40 - flush type-ahead buffer.

Any data in the typeahead buffer is discarded. If the overrun flag was set, file error 175 is returned; otherwise file error 0 is returned.

Setmode 203 - First byte timeout

P1 specifies the timeout value in 0.01 second ticks waiting for the first byte in response to a Read or Writeread. P1=0 disables this timeout (other timeouts may apply). If this timeout expires, file error 171 is returned.

Setmode 204 - Inter-byte timeout

P1 specifies the timeout value in 0.01 second ticks between bytes received in response to a Read or Writeread. P1=0 disables this timeout (other timeouts may apply). If this timeout expires, file error 172 is returned, along with any bytes previously received.

Setmode 205 - Total read timeout

P1 specifies the timeout value in 0.01 second ticks waiting for a normal completion (interrupt character or maximum read byte length fulfilled) to a Read or Writeread. P1=0 disables this timeout (other timeouts may apply). If this timeout expires, file error 173 is returned, along with any bytes previously received. This timer starts when the read is started.

Setmode 206 - Write timeout

P1 specifies the timeout value in 0.01 second ticks waiting for output completion of a Write or Writeread. P1=0 disables this timeout (other timeouts may apply). If this timeout expires, file error 174 is returned. The number of bytes sent is undefined. This timeout generally applies when flow control is enabled.

Setmode 207 - Verify ATAP

Assists applications in determining type of access method controlling a file. P1 and P2 are ignored. Last params are returned with ascii “TDP1” (P1= 0x4754, P2= %h4331). Generally, other access methods (like ATP6100) will return file error 2.

Setmode 217 - Extended Interrupt Character Handling

Setmode 217 allows for total control of all 256 input byte values, as opposed to setmode 9 which only handles 4 different values.

P1 omitted

No action.

P1 = 256

P2, if specified, is ignored. The default interrupt characters are set:

bs (08)
action code 1 (backspace)

cr (0d)
action code 4 (enter) . NOTE: The character defined by Setmode 223, which defaults to CR (0d), is set to action code 4.

^x (18)
action code 2 (line erase)

^y (19)
action code 3 (eof)

0 <= P1 <= 255, P2 specified

P1 represents the interrupt character, and P2 is the action code for that character. See "Interrupt Character Handling" for definitions of action codes. If an undefined action code is specified in P2, the request is aborted with file error code 2.

0 <= P1 <= 255, P2 omitted

P1 represents the interrupt character. Last params will return LP1 as the action code presently defined for the specified character, and 0 for LP2. Except for this case, last params are not meaningful for setmode 217.

P1 > 256 or P1 < 0

File error code 2 is returned.

Example 1:

CALL setmode (fnum , 9 , %h080d , %h1819) ;

... is equivalent to ...

CALL setmode (fnum , 217 , 256) ;

... and is also equivalent to ...

FOR bx := 0 TO 255

DO CALL setmode (fnum , 217 , bx , 0) ;

CALL setmode (fnum , 217 , %h08 , 1) ;

CALL setmode (fnum , 217 , %h18 , 2) ;

CALL setmode (fnum , 217 , %h19 , 3) ;

CALL setmode (fnum , 217 , %h0d , 4) ;

Example 2:

CALL setmode (fnum , 9 , %h0a0a , %h0a0a) ;

... is equivalent to ...

CALL setmode (fnum , 217 , 256) ;

CALL setmode (fnum , 217 , %h08 , 0) ;

CALL setmode (fnum , 217 , %h18 , 0) ;

CALL setmode (fnum , 217 , %h19 , 0) ;

CALL setmode (fnum , 217 , %h0d , 0) ;

CALL setmode (fnum , 217 , %h0a , 5) ;

... and is also equivalent to ...

FOR bx := 0 TO 255

DO CALL setmode (fnum , 217 , bx , 0) ;

CALL setmode (fnum , 217 , %h0a , 5) ;

Setmode 218 - Carriage Control Handling

Setmode 218 allows for carriage control to be compatible with either terminal or printer device drivers.

P1 = 0 (default), for terminal (CSSASYNC) compatibility. Will send LF first, then CR.

P1 = nonzero, for printer (CSSPRINT) compatibility. Will send CR first, then LF.

See also Setmode 6 and 27.

Setmode 220 - Handling of unsupported setmode operations

ATAP does not support all of the setmode operations previously supported by ATP6100 (see the following section for details on ATP6100 setmode operations which are supported). In many cases, these unsupported setmodes are not required for proper operation, and can be safely ignored. In firmware versions gem028.16 and earlier, file error code 2 (invalid operation) was returned for setmode operations not supported by ATAP. This was intended to focus attention on these setmode operations for review and recoding, but in some cases application changes were inconvenient or impractical. Setmode 220 controls when file error code 2 will be returned in response to various setmode requests:

Setmode 220 P1=0.
Compatible with firmware gem028.16 and earlier. File error code 2 will be returned for any setmode function not supported by ATAP, and for any supported setmode that includes invalid parameters (for example, an undefined baud rate).

Setmode 220 P1=2.
Default at session startup. File error code 2 will only be returned for a supported setmode function that includes an invalid parameter. Setmode requests not supported by ATAP will be ignored with file error code 0 (normal completion).

Setmode 220 P1=2.
File error code 2 is never returned by ATAP for setmode requests, even if the setmode function in unsupported or even if a supported setmode includes invalid parameters.

Setmode 222 - ETX / ETB Character

Setmode 222 allows redefinition of the “ETX” and “ETB” characters used by Setmode 13.

The default value for both P1 and P2 is the actual ascii ETX character (hex 03). Any value hex 00 to hex ff is allowed.

These characters are only used when setmode 13,1 or 13,3 is in effect.

Setmode 223 - Line Termination Character

Setmode 223 allows redefinition of the line termination character used to terminate normal read operations. The default is CR (hex 0d), but may any value hex 00 to hex ff is allowed.

Setmode 224 - Type Ahead Enable/Size

Setmode 224 allows configuration for the size of the type ahead buffer, and also allows for type-ahead to be disabled for applications which relied on ATP6100 handling (i.e. discard) of such data. P1=0 disables type-ahead. P1>0 defines the size of the type-ahead buffer in bytes. P1<0 or P1>32000 is invalid. If P1>0 and P1<2000, a 2000 byte buffer is used to avoid inefficient operation.

 Standard ATP6100 Setmode functions

Any standard ATP6100 Setmode not listed in this section will be rejected with error 2 - unsupported function.

Setmode 6 - spacing

P1.<15>=1, P2.<15>=0 (default) - add LF and CR to write

P1.<15>=1, P2.<15>=1 (default) - add LF only to write

P1.<15>=0, P2.<15>=0 (default) - add CR only to write

P1.<15>=0, P2.<15>=1 (default) - add nothing (“transparent”)

See also setmode 27 and 218

Setmode 7 - Auto LF on CR

P1.<15>=0 (default) - echo CR only in response to received CR

P1.<15>=1 - echo CR/LF in response to received CR

Setmode 9 - set interrupt chars

Refer to the sections "Interrupt Character Handling" and "Setmode 217" for related information.

When both P1 are P2 are specified, they are treated as four bytes, and their order does not matter. For example, the following Setmode 9 calls are equivalent:

Call Setmode (fnum , 9 , %h080d , %h1819) ;

Call Setmode (fnum , 9 , %h1819 , %h080d) ;

If only one of P1 or P2 is specified, then the missing parameter is ignored. For example, the following three are equivalent:

Call Setmode (fnum , 9 , %h0a0d) ;

Call Setmode (fnum , 9 , , %h0a0d) ;

Call Setmode (fnum , 9 , %h0a0d , %h0a0d) ;

The above example also demonstrates that specifying an interrupt character more than once has the same effect as specifying it just once.

If either of P1 or P2, or both, are specified, then the interrupt character table is cleared to all zero action codes ("normal") and the following processing is done for each specified byte value:

cr (0d)
define cr (0d) as action code 4 (Enter). NOTE: The character set by Setmode 223, which defaults to CR (0d) is used.

bs (08)
define bs (08) as action code 1 (backspace)

^x (18)
define ^x (18) as action code 2 (line erase)

^y (19)
define ^y (19) as action code 3 (eof)

anything else - define the specified byte as action code 5 (termination)

The following setmode 9 calls, which represent the default settings, are equivalent:

Call Setmode (fnum , 9 , %h0818 , %h190d) ;

Call Setmode (fnum , 9 , %h080d , %h1819) ;

Setmode 9 always returns the previous settings of P1 and P2; thus Setmode 9 without either P1 or P2 can be used to retrieve the current settings without changing them. TDP returns the previous values in a different, although functionally equivalent, manner. The four bytes are returned in collating sequence order. For example, the default settings are returned as follows:

Call Setmode (fnum , 9 , %h080d , %h1819) ;

Call Setmode (fnum , 9 , , , lp) ;

... lp [0] = %h080d

... lp [1] = %h1819

If fewer than four different interrupt characters are defined, then the first (lowest binary value) interrupt character is replicated in the "unused" spots in last params:

Call Setmode (fnum , 9 , %h080d) ;

Call Setmode (fnum , 9 , , , lp) ;

... lp [0] = %h080d

... lp [1] = %h0808

Call Setmode (fnum , 9 , %h0a0a) ;

Call Setmode (fnum , 9 , , , lp) ;

... lp [0] = %h0a0a

... lp [1] = %h0a0a

In all cases, the values returned as last params can be used in a subsequent call to setmode 9 to restore the original settings.

Setmode 13 - set read termination on ETX/ETB character(s) as defined by setmode 222.

P1=0 no action is taken but a successful completion is returned

P1=1 terminate 1 character after ETX/ETB

P1=3 terminate 2 characters after ETX/ETB

PI=2, P1>3 rejected with file error code 2

Setmode 14 - set read termination on interrupt chars

P1.<15>=1 default - terminate on interrupt char

P1.<15>=0 transparent mode

Setmode 20 - echo

P1.<15>=1 default - echo

Setmode 27 - set system spacing mode

P1=1 default - postspace (LF and/or CR sent after print line data)

P1=0 prespace (LF and/or CR sent before print line data)

Setmode 28 - reset to default values.

Does not affect the Setmode 215 or 216 settings.

Setmode 38 - special line termination mode and character

For P1=0 or P1=1, set special line termination mode with P2 specifying the new line termination character. For P1=0, the termination character is excluded from the read buffer and count. For P1=1, the termination character is included in the read buffer and count.

For P1=2 (default), special line termination mode is reset. The line termination character is set back to carriage return (%h0d), and the normal line termination rules described under Read again apply. The normal interrupt characters (CR, BS, Ctrl-X, Ctrl-Y) as reset to default at session initiation or Setmode 28, or as redefined by Setmode 9, are still in effect. Each incoming character is compared first against the Setmode 38 special termination character, then the normal interrupt characters. If this action is not desired, then use Setmode 9 P1=0 and P2=0 to disable them.

TDP compared to GAP

For printer sessions

TDP supports network-attached printers like

Hewlett-Packard LaserJet printers with JetDirect interfaces.

H-P external print servers

HP 55xx series printers

Microplex external print servers

Other devices with “raw TCP” interfaces

For terminal sessions

Operation varies by terminal server.

Opens always complete immediately.

Control 11 and 12.

Physical characteristics of the port are handled entirely by the terminal server and are invisible to TDP, including:

speed

parity

character size

flow control

modem signals (DTR, RTS, DCD, DSR, CTS)

modem attribute (“Signal Control Enabled”)

No support for CISCORP ARC API.

Break handling

More resources used in NSK TCP/IP process

More LAN traffic

More resources used in TDP process

Less responsive echo

Less accurate timeout

Type-ahead disble via setmode 224, not 209

Conversion from CMI Configuration

A partial list of CMI configuration attributes is given, along with the suggested TDP equivalents.

AUTOLF

ON = Setmode 7,1. OFF = Setmode 7,0.

ECHO

ON = Setmode 20,1. OFF = Setmode 20,0.

INTCHAR

Setmode 9.

ETXCHAR

Setmode 222.

ETXENABLE

Setmode 13.

LINECHAR

Setmode 223

RECSIZE

See RECLEN parameter of ADD WINDOW command.

SPACING

NONE = Setmode 6,0. PRE = Setmode 6,1 and Setmode 27,1. POST = Setmode 6,1 and Setmode 27,2.

Old asynch terminal ports would send CR LF whereas printer ports would send LF CR. TDP defaults to LF CR. Use setmode 218,1 if CR LF order is needed.

SPECIALMODE

Setmode 38.

Type-Ahead

Standard NonStop CLIP did not support type-ahead; this was provided by third-party Ciscorp ARC (asynch read continuous) software. TDP enables type-ahead by default, which can result, depending on the application, in unexpected data at the beginning of a buffer. See setmode 224 to disable type-ahead.

Guardian File System Error Codes

0
Normal completion

1
End of file (Control-Y).

2
Invalid operation, such as undefined Setmode P1 value.

110
Requesting application does not have break access

111
Break received

140
Modem error. CD was not present, or dropped.

171
First byte timeout expired (see Setmode 203).

172
Inter byte timeout expired (see Setmode 204).

173
ATAP: Total read timeout expired (see Setmode 205).

174
Write timeout expired (see Setmode 206).

175
Typeahead buffer overrun.

177
I/O stopped by Setmode 213

Note: In some cases, data is returned to read and writeread even when the error code in non-zero; always check the I/O count returned from read, writeread, or awaitio calls.

Modem “AT” Commands

The modem should not echo AT commands (ATE0).

The ATAP application should not echo while in AT command mode (setmode 20,0); echo can be re-enabled after connection.

Interrupt character processing in general should be disabled (setmode 14,0 or setmode 38). Consider a short read timeout (setmode 205).

Control 11 is the preferred method to await connection to the remote for both answer and call mode.

The ATAP application should generally suppress automatic spacing (setmode 6,0) at least while in command mode, explicitly adding ascii carriage return (%h0d) to the end of all AT commands.

(%h0d) to the end of all AT commands.

Chapter 6
- Printers

Overview

This chapter provides configuration examples and known limitations of printers which have been tested with TDP..

HP 55xx Series Printers

Use PORT=9100 on ADD WINDOW.

Microplex Print Servers (M205 etc)

Use PORT=4400 on ADD WINDOW.

Hewlet-Packard LaserJet with JetDirect

Use PORT=9100 on ADD WINDOW.

Hewlett-Packard External Print Servers

Use PORT=9100 on ADD WINDOW.

Chapter 7
- Troubleshooting

Overview

This chapter discusses troubleshooting techniques.

TDP cannot connect to printer

Printer operational?

Ping printer server from a network workstation or the NSK server?

Does terminal IP address match TDPCOM Add Win?

Does printer TCP port match ADD WINDOW?

Does printer support TCP raw connections?

Unexpected incoming data in read buffer

Try setmode 224,0

File Error 12 on Open of $TDP.#PORTxx

Exclusive use conflict with another (existing) opener of the window.

Unexpected Results - Using ATAPD

If certain ATAP operations are not producing the expected results, try the ATAPD program included in the TDP DSV. If possible, reproduce the problem using a small ATAPD script. This will greatly expedite problem analysis and resolution by Gemini support staff.

ATAPD is a prototyping and debugging aid. ATAPD is a TAL program and is provided in both source and object forms. Refer to the TAL source file ATAPDSRC for installation and usage instructions. ATAPD can be run interactively, (i.e. one Setmode, Writeread, etc., at a time) or from a script stored in an EDIT file. Users of the ARC API may want to inspect the file ARCDCMD as an example of how to test this capability.

The ATAP application should generally suppress automatic spacing (setmode 6,0) at least while in command mode, explicitly adding ascii carriage return (%h0d) to the end of all AT commands.

Tracing

Gemini may recommend that a TDP trace file be created:

TDPCOM

% TRACE ON trace1

... run the failing test

% TRACE OFF

Minimize other activity within the GTS process being traced; a separate TDP process can easily be created to segregate a single port for tracing.

Chapter 8
- Release Notes

This chapter describes new features, fixes, and known problems for TDP software.

TDP A01 – 28 August 2001

1
Initial release.

TDP A02 – 18 June 2003

1 Fix for truncated printout queued at time of application close. TDP now waits for orderly shutdown of the TCP/IP session.

2 Connect errors (printer powered off, not accepting sessions, etc) now return open error 66. Formerly, the open completed normally and various errors were returned to subsequent write requests.

3 If the LICENSE file has expired or will expire within 32 days, an EMS message is displayed every morning at 9:00 AM, and an automatic LICENSE^REFRESH is performed.

4 New TDPCOM command LICENSE^REFRESH

5 Spacing now properly defaults to post-spacing.

TDP A03 – 12 May 2004

1 Setmode 207 allows P1 and P2

TDP A04 – 22 February 2005

1 ADD WINDOW command IPADDR field now allows DNS names

2 Setmode 9 fixes

TDP A05 – 04 December 2005

1 Setmode 224,0 (type-ahead disabled) now discards input arriving while no read active

2 Variable delay after repeated connect failure

3 Avoid connect-retry hang on control 11

TDP A06 – 11 January 2006

1 ADD WINDOW now supports WRITE-DEPTH with default 10. This prevents a single WINDOW from using all TDP memory when the remote device is not accepting data.

2 Setmode 218 implemented.

3 Setmode 6 P2 implemented

4 Fix extraneous error 140 on first write after open of window

TDP A07 – 17 July 2006

1 TDPI type 800 object for Itanium

2 Uses latest SocketLib T0372 release G08AAQ.

TDP A08 – 28 November 2006

1
Fix for abend when tracing is disabled

TDP A09 – 16 January 2007

1 DNS names are resolved on every connection (application open) to better support printers with dynamic DHCP addresses. See new SAVEHOSTADDR command. INFO WINDOW display now shows the resolved numeric address.

2 Fix for theoretical read timeout problems with setmode 203,204,205 (no known users of this feature) when system clock changes due to DST or SETTIME.

TDP A10 – 21 January 2008

1 Setmode 222 now also supports P2 for ETB character, used with setmode 13.

2 Setmode 13 implemented

TDP A11 – 29 May 2008

1
Setmode 14,0 now properly disables interrupt chars.

TDP A12 – 27 May 2009

1 New TDPCOM command CONNECT_TO
2 New TDPCOM command RETRY_4127.

3 New TDPCOM command EMS_TCP_ERR

4 New TDPCOM command SHUTDOWN_EOF_TO.

@EOF

PAGE
6

_1060412239.vsd

